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CHAPTER I

INTRODUCTION

1. Purpose of the study.

The analysis of the modal behavior of an elastic structure,

i.e. the determination of its natural frequencies and correspond-

ing normal modes is an important part of the actual design of the

structure. The calculation of normal modes is important for several

reasons. First, by examining the normal modes obtained and particu-

larly the positions of the rodal lines, it may be possible to tell

whether flutter is likely or not, and in any case such an examination

will indicate what types of flutter should be investigated. It may

also be possible to predict whether there is any likelihood of

resonant response vibration, due to the proximity of the natural

frequencies to the forcing frequencies of the power plant, gust

fields, etc. Further, the normal modes are commonly used for the

actual flutter and response calculations. Theoretically, any set

of independent, complete deformation modes can be used as degrees

of freedom in setting up the flutter equations, but from practical

considerations it is suitable to select those modes which give an

accurate flutter speed when the number of chosen modes is small.

This is more likely to be the case when the modes are related to

the actual structure, as the normal modes are, than when arbitrary

modes are chosen. An additional reason for using normal modes is

that they can lat-er be compared with the resonance - test modes.

It is then understandable that the modal analysis of elastic

systems has been given extensive attention in the literature. The
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list of the various methods developed for this purpose is much too

large to be included here, therefore the next paragraph will review

only the main conventional methods that have been used in modal

analysis.

2. Historical Background.

The first half of this century has seen a large development

of approximate methods for solving the eigenvalue problem for which

analytic solutions were impossible. In 1921 Holzer [1] developed

a step-by-step method for solving the differential equation of

beams in pure torsion; this method was later extended to the case

of flexural vibrations by Myklestad [2] in 1944. At about the

same time Stodola [3] developed a method of iterative integration

for solving the differential equation, while White [4] and Crout

[5] focused their interest on finding solutions to the integral

equations by numerical integration and collocation [4] or by

collocation with asumed functions [5]. In 1939 Grammel [61

developed the Complementary Energy Method which was later intro-

duced by Westergaard [7] and Reissner [8]. Alternatively, Duncan

[9, 10] applied Galerkin; and Rayleigh-Ritz method to the eigen-

value problems with special polynomial functions used in the series

expansions. Various matrix methods were developed in the process:

matrix iteration [11], relaxation methods [12], etc.

Some of the aforementioned methods failed to apply to the

problems of complex elastic structures: For instance, in a Galerkin

method the comparison functions depending upon the spatial coordinates

must satisfy the boundary conditions associated with the problem
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and this choice would be particularly difficult in the case of a

structure such as an airplane. In any case, all the methods that

have been mentioned so far suffer from the defects inherent in

replacing a structure by a disc te mass system. Duncan has shown

by considering the torsion of a uniform cantilever that the error

in the frequency, obtained by means of the discrete mass method is

inversely proportional to the square of the number of degrees of

freedom used. To obtain an accuracy of one per cent it is necessary

to use six times as many degrees of freedom as there are desired

modes. The accuracy for flexure may be a little better. If an

accuracy to within two per cent ; be achieved, then at least

four times as many degrees of freedom as there are desired modes

should be used for either flexure or torsion.

As a consequence, in the second half of this century most

of the effort has been directed towards developing new methods

in which the structures will no longer have discrete representations

but will be approximated in a continuous manner. Hurty [13, 14]

has developed a component modes approach for complex structures

through the use of various types of modes: "rigid body modes",

"constraint modes" and "normal modes", the latter being usually those

of some (artificially) restrained component. Gladwell [15] speaks

of "branch modes" which are again those of an artificially restrained

component. Wittrick and Williams [37] present an algoritum for

computing the natural frequencies of elastic structures if their

dynamic stiffness matrix K(w) corresponding to any finite set of
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displacements is known. Walton and Steeves [16] present an inter-

esting alternative analysis which deals directly with the equations

of motion and constraint. Buckling problems, which are of course,

mathematically analogous to free vibration problems,have been in-

vestigated by Budiansky [17] and Reissner [18]. Most recently,

Dowell has treated the free vibrations of a linear structure with

arbitrary support conditions by a Rayleigh-Ritz method introducing

the use of Lagrange Multipliers [19], and he applied a similar

approach to the free vibrations of an arbitrary structure in

terms of component modes [20]. The theoretical analysis presented

in this study is developed from the works of Dowell aforementioned.

3. Statement of the Problems.

The intention of the present work is to point out the general-

ity of the Rayleigh-Ritz Component Modes approach using Lagrange

Multipliers, by illustrating this method for different types of

problems.

In some cases, the problems treated have already been con-

sidered in the literature by ad-hoc methods, and their choice

was intentional in order to check the method for accuracy. This

is the case of the problems treated in Chapters II and V; in other

cases the theoretical results obtained are checked with experimental

results (e.g. rotor blade problems of Chapter II, beam-like con-

figuration of Chapter III).

Finally, as the method is being proved accurate, new prob-

lems are investigated, as the oblique wing configuration of
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Chapter IV.

A more detailed statement of the problems is now discussed.

The free vibrations of beams with non uniform properties are

the object of Chapter II; in addition to the conventional dis-

crete mass methods already mentioned, almost all the methods de-

veloped for this type of problems have been ad-hoc methods. For

instance, Cranch and Adler [23] offer an analytic solution for some

classes of cantilever beams with rectangular cross section by

means of Bessel functions, Conway and Dubil [24] used a similar

approach for the study of truncated cone and wedge beams, and

many other examples can be found through the literature. The

theory presented in Chapter II is valid as well for an arbitrary

variation in the beam properties along the span as for an arbitrary

set of constraints, or boundary conditions, applying at the edges

of the beam. For continuous beams with smooth non-uniform charac-

teristics, an alternative method is developed in Appendix I. It

is a perturbation - Galerkin method, particularly suitable for

the determination of harmonics above the fundamental.

The Rayleigh-Ritz component modes method using Lagrange multi-

pliers is applied in Chapter III to the free vibrations of a

flexible airplane with high aspect ratio components. The earliest

theoretical treatments of this problem have been based upon the

representation of the aircraft by a system of rigid masses

elastically connected, as show the works of Traill-Nash [25, 26]

and Hunn [27]; more recently Przemieniecki [28] used the sub-
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structure concept with the boundary interaction forces as unknowns

in the analysis. An interesting alternative method was presented

by Schmitz [29]; the equations of motion of the flexible airplane

are written in the form of a nonself-adjoint system (including

structural damping), which is then treated by an eigenfunction ex-

pansion. Although the analysis presented in Chapter III does not

include structural damping, the method can be readily generalized

to the non-conservative case. Appendix II provides in fact an

analysis of the modal damping, also a Rayleigh Ritz component

modes analysis using Lagrange Multipliers.

The study of Chapter IV is motivated by the increasing interest

developed in the past recent years for the concept of a yawed wing

aircraft. In a recent article [30], R. T. Jones from the NASA Ames

Research Center suggested that an oblique wing configuration

can be very suitable from an aerodynamic point of view, and

encouraged in a more serious investigation of the problem.

The concept was found interesting and resulted in a large

number of research proposals from Universities and Companies.

The Boeing Company [31] is already engaged in studies concerning

the static aeroelastic phenomena associated with the oblique

wing aircraft,and Stanford University has submitted a proposal

for the investigation of the effects of asymmetry on the

dynamic stability of aircraft . As a first step in the aeroelastic

analysis, the study of Chapter IV provides the structural material

frequencies and normal mods for such configerations.
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For straight-wing airplanes where the high aspect ratio

assumption for the wing and the tail is not satisfactory, a theo-

retical treatment is developed in the Appendix IV; the latter

components are represented by plates with uniform properties.

As a preliminary analysis, the study of the Capter V shows

how successfully the method applies for the two-dimensional problems

of plate vibrations. Two different examples are chosen for this

purpose; the first example treats the problem of a point clamped plate

and investigates the convergence of the natural frequencies towards

those of a cantilivered plate, as given in Reference [35]. This

analysis gives insight into the suitable values to be chosen for

the parameters (initial nb. of modes used for the plate in x

and y - directions, nb. of points of constraint along the plate)

so that the natural frequencies obtained by the analysis of

Appendix IV, are within a good degree of accuracy.

The second example, which had a recent treatment in the

literature [36] by the use of dual series expansions, is the

problem of a simply supported plate with an internal rigid line

of support. The present method is proven to be very satisfactory

for such problems as shown by the convergence graphs obtained

in the analysis.
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CHAPTER II

MODAL BEHAVIOR OF BEAMS WITH NON-UNIFORM PROPERTIES

1. Statement of the problem and basic assumptions.

The present chapter deals with structures of the beam type,

as illustrated below.
42

We consider beams of length 2L along the x axis and we denote

by E Youngimodulus of elasticity and by I the structural mo-

ment of inertia about the neutral axis,

I = f/ Z2dy dz

cross sectional area

The bending stiffness El will be considered variable along the

span; the variations can be due to the geometry of the beam

(non constant thickness or width), or to variations in the

elastic properties (variable E along the span). The theoretical

development is general and applies to all the possible cases

mentioned above; numerical results are given in some particular

cases.

The basic assumptions of the present analysis are the following:
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(1) The elastic axis of the unbent beam (as classically defined,

Ref. (2)) is a straight line which bends into a plane curve during vi-

bration.

(2) The elastic axis coincides with the line of the centers of

gravity of the cross sections, hence bending is uncoupled from twisting.

(3) Initial stress in the axial direction is neglected although
L 2

conceptually it could be included. An additional term TI f w' dx
2 -L

would appear in the potential energy; the details of the constraint

conditions and effects on the distribution of internal shear and bending

moment require more study.

(4) The lateral displacements of the beam in vibration are

small compared to its thickness and the slope is small compared

to unity (this justifies a geometrically linear theory).

(5) The elastic constitutive equations are those of a linear

isotropic material, in other words the stress - strain relation

is given by Hooke's law.

(6) Shear deflection and rotatory inertia are neglected.

2. Theoretical background.

The problem is considered in a variational formulation

w (x,t) being the deflection of the beam at time t and station x,

its kinetic and potential energies are:

L

T = 1 (w ~(x,t) )2 dm
2 / at

-L

where dm is the element of mass per unit length.
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L

U= 1 EI(x)( a2w (x,t) ) 2dx

x

-L

When EI has a complicated dependence on x, the last integral is

very difficult to handle.

The present method proposes a solution to the problem by

conceptually disassembling the structure into sub-beam components

of uniform bending stiffness.

The rigourous justification of this approach is based on the

mathematical approximation of a continous function defined on a

compact set by step functions, in the following manner:

EI (x)

Elo I

For each of the substructures, the modal displacements

are sought in a Rayleigh Ritz expansion and the continuity con-

ditions are enforced by means of Lagrange multipliers.

3. Derivation of the frequency equation.

The following notations are now introduced:

(EI)(n): constant bending stiffness of the nth. component, n=l, N

M(n) : half mass of the nth component

t(n) : half length of the nth component

dm(n) : element of mass/unit length relatif to the nth component

w(n) (x,t): bending displacement of the nth component



k i  : non dimensional frequency parameter of a free-free beam

of uniform stiffness.

i (x) : corresponding normal mode (free-free beam)
1

q (n)(t): generalized coordinate of the nth component relative to

the normal mode number i.

The modal solutions are sought in the form:

w (n ) (x,t)= qi (n)(t) (x )  (1)
i = 1

(n) (n)

for -f <x<

Subsequently, the total kinetic energy of the structure is:

N(n )N

S1 z (n) (x,t) dm(n) (2)
2 n=l

f(n)

By substitution of eq (1) and use of the orthonormal properties

of the free-free beam modes, (2) can be written in the form:

N CO 2
T E N z M q (t) (3)

n=l i=l

Similarly, the potential energy of the entire beam is:

N f(n)
1 (n) 2 (n) (xt) 2

U =  Z (EI)n ( ( n(x,t)) dx
n=l 7 ax

_ (n)

Substitution of eq (1) and use of elementary beam equation yields:

N C
1 (EI)(n) k 4  (n)(t)2
-- i q  (4)

n=l i=1 3n)3
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The beam-components are required to satisfy the following con-

tinuity conditions:

a) continuity of the bending displacements at the interfaces:

w(P) ((P)),w(p+l))(_(p+)) (5) where f(P)= (,P+l)

b) continuity of the slopes:

a () =a 4p+1) (p+1)) (6)-w

At this point it has to be pointed out how convenient is the

choice of the free-free beam modes as "trial" functions in the

Rayleigh Ritz expansion.

In addition to the fact that they allow a great flexibility

in expressing the various constraint conditions, their choiceisatis-

fies already the continuity of the second and third derivative of

the w (n) at the connection points.

In the case in which the initial beam is not free at both ends,

corresponding additional constraints have to be added, as illustrat-

ed in section 4.b)

For the time being, the initial beam will be considered uncon-

strained without loss in generality.

Equations (5) and (6) can be written after suitable non-dimen-

sionalization:
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w(P) w(P+l)(- 1)

for P = 1, ..... N-1

1 wr ( 1) = 1 (-1)

(P) (p+l)

and further, by use of eq (1):

i ) (t) i(1) i ( t) (-) = 0 (7)

i=l

P =1;. .N-1

q1 (t) .(1) - qi (t) Vi(-1) = 0 (8)

i=1 4p) 1(p++)

Subsequently, the Lagrangian of the structure is:

N m N c
(n) (n) 2 1 (EI) (n)k.4q(n)(t)2

of 1 c E M q (t) i= i i 2 3
n=l i=l n=l i=l e(n)

N-1 m
+ Z h n (q (n) (t) (1)- qi (n+) (- +

n=l i=l

N-1 

X 2 Pn ( 9i(n)(t) $'(1) - q(n+l)(t) 'i(-))

n=l i=1 f(n) t(n+1)

where n,n are Lagrange multipliers. (9)

It is interesting to note at this point that through the use

of the Lagrange multipliers as they appear in (9), the present

method gives not only information about the modal behavior of the

beam, but in addition provides results for shear forces and bending
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moments.

Indeed, it is known in Classical Mechanics that the Lagrange

multipliers can be physically interpreted as being the generalized

forces demanded for the maintenance of the corresponding constraint

conditions. In the present case, the values of the An and un,

n=l,...N=l give respectively the distribution of the shear force

and the distribution of the bending moment along the span of the

beam at the points of constraint.

The Lagrange's equations derived from (9) are:

SM(1) (1)(t) + (El) 1) k4 qj( 1) (t) - 1i(1) - 1  (1) 0
(1) 3 (1)

M (n )  qi (n) (t)+ (E k 4  n)(t) - A~i(1) +
T-n)3

n-1 i(- 1) -un -i(1) +  un-I i(- 1) = 0

n =2, .... N-l

M(N) " (Nt) + (El (N) k 4 qi(N)(t) + Nii ( - l) +

(N) 3

N-1 ti(-1) = 0

i q (n ) (t) i(1) - qi(n+l)(t) P (-l) = 0 n=l,...N-1
i=l



00

S (n) (n+l)

The last two equations are in fact the constraint equations

expressing the continuity of the displacements and slopes.

The following harmonic time dependence is assumed in the

modal analysis: r -

(n) -(n) e

n ne

qi (t) 9 q

EI(1)3

° V Wt

11n (t) = P-n (EI)( e
(1)2

and the following notations are introduced:

m M( )  (1)
n M n

M(n) Y- (4-)

(EI) (n)

SM(n) 1n) 3  
(1) = - k 4

n ; Fi 2  ki
(EI)(.1) Fi(n) = 2 . n=

M1) (1)3 - i n=2 ...
M(1 () ni
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As a first step in solving the Lagrange's equations, the

generalized coordinates are expressed in terms of the Lagrange

Multipliers from the equations of motion per se;

qi1 = _ + (1) + T1 '.(1)qiF. 1) 
(10)

1

- (n)i (n = n (-ill)-n-1i (-1)+ Yn~ i'(1)-

F(n) (11)

Yn-!un-1 of i
.' n) )

qi = MN N-
F (N)'" (12)

Then (10), (11), (12) are used in the constraint equations

in order to obtain a set of 2N-2 linear algebraic equations in

terms of the unknown Xn and n. This set of eigenvalue equations

is now written for convenience in matrix form:

(w).x = 0 (13)

where A is the 2N-2 dimensional vector having for components Xn

(n=l, ...N-l) and T-n (n=1, ....N-l) and A (w) is the symmetric

matrix of order 2N-2 defined by its elements A as follows:nm
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Sn=l:
o 2 2

A = . (1) +m 24. (-1)
1 1 (-1 )

i=1 F (1) F (2)
1 1

S i= F (2)
i

A. = 0 3< m <N-1

A. N i l ( 1) _ 
( 1 ) + m Y2 Ai- ~- (-1)

F.(1)1

1 N+1 i= -2-i=1
F. (2)

A1 m= 0 N+2 m I 2N-2 (N>4)

n = 2, ... N-2

A. = 0 1$ m <n-2nm

n n-1 i=

F. (n)
1

2 2
An n =  (mn i (1) + m.n+1 i )

i=1 (n) F n+i)
Fi 1
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An n+l= - mn+ i (1) i (-1)
i=1 F. (n+l)

1

A = 0 n+2 < m < N+n 3
nm

00

A = - mnYn i(1)> (-1)
n N+n-2 i=l

(n)
F.

1

00

An N+n-1 i 1 (m Y ni I i(1) + n+l1  n+-i(-)

F (n) F (n+1 1

An N+n = - E ran+l Y n+l

F. (n+l)
i

An m= 0 n+N+l < m 2N-2

n =N-1

AN- m = 0 I1 m N-3 (N>4)

N-1 N-2 N- 1 l () -i=l

F. (N-i)

4-1 N-1 2
i= F. (N- 1) F N)

1 1

AN-1 m = 0 N< m < 2N-4
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N-1 2N-3 = - N- N-1 i(1) ¢' (-1)

.(N-l)

\-1 22 tN-1 N-1 i(1) '. (1) + mN YN(1) (-1
i=1 F.(N-- F.(N)1 1

* !I = N

AN m = am N already defined for 1<m<N-1

2 2 2N N = ( ( )  + m2Y2  4() )

i=1 F (1) F (2)

o 2

A =- m2Y 2  'i(i)i (-1)
N N+I i=l

C (2)

AN m= 0 N+2<m<2N-2

n = N+I, ... 2N-3 ; p = n-N+l

a = A already defined for 1<m<N ; N+I <n<2N-3nm mn

A = 1 (pYp i i(l) l)_ + m+ 1Y~ 1 i4(-1)' (-1) )np i=1 F M )  mp+IYp+I i--p+d

1 F
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A l - Y p+, (1)'.(-1)
n p+1= - i - -p+-

i=1 (i+1F.
1

An m= 0 P+2 <m< p+N-3

2
A = - n Y P.(1),i(1)n N+n-2= M n p --

F.i=
(

1

S 2 2 2 2
An N+p-1 =  ( mDYP 'i ( 1) + mp+y 1p+l Li() )

i=1 F TF. (n+1)
i 1

2

An N+P= - i m+ 1 p+1 'i(1) ~'i-1)

i= F.(p+1)
1

An 0 Np+ < m < 2N=2

0o 2 2 2 2
A m = m1 m
2N-2 2N-2 i=l ( N-1 YN-I (1) +mN

1F

Equation (3) leads to the frequency equation

det (A (w) )= 0 (14)

which is the necessary and sufficient condition for existence of
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solutions An, n = 1,....N-i

This equation cannot be solved analytically except maybe for

very small values of N ; numerically, the fastest and simplest

method to use is a trial and error approach. The left hand side of

the equation (14) is plotted against the variable w ; if two successive

values of w make the left hand side of (14) change sign, then one of

the natural frequencies should be between these two w's.

This is a quite straight forward operation except for the fact

that care should be taken to decide whether the change in sign cor-

responds to a valid solution (i.e. a natural frquency of the beam)

or to a natural frequency of one of the components. Such types of

situations are illustrated below:

det (A (w) ) det (A (w) )

I

The accuracy of the natural frequency can be made as high as

necessary, provided that the 2 successive w's are close enough and



- 22 -

that the values of the left hand side of equation (14) are close to

zero.

For each natural frequency the Lagrange multipliers are then

determined from equation (13) up to multiplicity, for instance the

ratios Xn  n=2,...N-1 and pn n=l,...N-1

can be determined.

Subsequently the generalized coordinates for each component are

determined from eqs. (10), (11), (12) and then the corresponding mode

shape as given by equation (1).

4. Numerical analysis.

a) A simply supported beam of variable geometry.

The present analysis treats the case of a stepped beam, simply

supported at each end as shown in Figure 1.

The variation in the bending stiffness is due to the variation

in the thickness of the beam and the geometry of the problem suggests

to consider two components. As mentioned previously, the theory

extends to the cases where the initial beam is constrained at the

ends; in the present problem two additional constraint conditions

have to be reinforced, namely

w(1) (-) = 0

w(2) ( =o

For the sake of simplicity it is assumed that 11 = 12 and that
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the cross - sections of the beam are rectangular, without great loss

in the generality of the problem. The analysis is developed in two

steps: the first step provides a check on the method for accuracy

and convergence, the second step Drovides the functional dependence

of the fundamental frequency with the ratio h ( 2 )

h ( 1 )

In the particular case in which h ( 2 ) = 1, the problem reduces

to that of a uniform beam simply supported at the two ends for which

the modal behavior is known analytically; in particular the first

2 2 92three non-dimensional frequency parameters are wl 2, 2 =4, 3 =93

In a first analysis, the convergence of the natural frequencies of the

beam towards the above values versus the number of modes used per com-

ponent has been investigated, and the numerical results are presented

below in tabulated form:

Table 1: First natural frequency

# modes used total # of 1 percentage
per component modes error

3 6 11.94 21.6%

4 8 11.05 12 %

6 12 10.16 3 %

8 16 9.918 0.5%

10 20 9.898 0.2%
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Table 2: Second natural frequency

# modes used total # of W2 percentage

per component modes error.

3 6 53.68 36.7%

4 8 45.01 14.9%

6 12 41.06 4.7%

8 16 39.835 0.9%

10 20 39.64 0.4%

Table 3: Third natural frequency

# modes used total # of W3 percentage
per component modes error

3 6 151.89 71 %

4 8 103.93 17 %

6 12 94.16 6.3 %

8 16 90.25 1.58%

10 20 89.71 0.87%

The results given in Table 1 are plotted in Figure 2; it can

be seen that the first natural frequency converges rapidly towards

n2 and that the rate of convergence is very steep especially at the

begining. Figure 3 represents a graph of the percentage error

in v2 versus the number of modes used per component; it can be seen

by extrapolation that in order to reach the accuracy in wl corres-

ponding to 10 modes per component, it is necessary to consider in



- 25 -

this case two additional modes for each segment.

Figure 4 provides a picture of the rate of convergence in the

third mode; in this case 14 modes are needed per component in order

to reach an accuracy of 0.2%.

This analysis is somewhat similar to the convergence analysis

in the classical Rayleigh Ritz method; moreover all the numerical

natural frequencies obtained are higher that the exact frequencies.

Another important convergence parameter is N (the number of com-

ponents into which the structure is conceptually disassembled); the

rate of convergence versus N in the fundamental mode has been in-

vestigated in the check case of the uniform beam. The results are

shown in Figure 5; 3 free-free modes are used for each component.

Although the graph shows rapid convergence, the results cannot be

interpreted in a self-contained manner. The reason is that even

with a fixed number of modes per component, the fact of increasing N

has the effect of increasing the total number of modes considered

and hence of improving the convergence.

As a consequence, the total number of modes considered has to

be chosen as a common parameter although it is not controlled direct-

ly in the method. The comparative rate of convergence is shown in

Figure 6; it can be seen that for the same total number of modes,

better results are obtained when for a fixed number of components

(N=2) the number of free-free modes per component gets larger. The

reason in this case is that there is "no need" in fact to increase

the number of components and thus making N>2 adds no physical improve-
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ment. From the numerical point of view, increasing the number of

modes corresponds to simpler operations than increasing the number

of components. By considering additional modes per component we

are only increasing the number of terms in the series giving the

Aij (w), while an additional number of components correspond to an

increase in the size of the matrix A (w).

Operations of the first type are handled by computer with higher

accuracy than computations of determinants for instance, for large

size matrices.

It should be mentioned that the present convergence analysis

applies only to this check case and therefore gives only an insight

to how the convergence problem should be handled; general conclusions

about convergence will be developed in the next paragraph.

The study of the case h (2 ) = 1 is completed by Figure 7 and 8.

h(1)

Figure 7 shows the first mode shape and the orders of magnitude of

the shear force per unit length and bending moment per unit length

at the mid-point; Figure 8 shows similar results for the second mode.

There is very good agreement with the classical sinusoidal shapes.

This concludes the study of the check case; in the second part of

the analysis the change in the fundamental frequency with the thick-

ness ratio is investigated.

The values of the non-dimensional frequency parameter wl are

plotted versus the ratio H = h (1) in Figure 9.

h(2)

For h ( l) > h ( 2 ) the frequency parameter is based on the character-
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istics of the first component, for h( 1 ) < h(2) w is based on the

characteristics of the second component. The reason for this choice

will appear clearly as we proceed.

The Figure shows that for h() > h 2 ) as H increases the funda-

mental frequency decreases from the value 9.898 (i.e. T2) to zero.

The first value correspond to the previous analysis, the second

value correspond to the limiting case of a uniform beam simply sup-

ported at one end and free at the other. In this limiting case the

fundamental frequency is zero and corresponds to a rigid body rotation

of the structure. The monotonic variation of ~l with H checks our

physical intuition; given the two beams illustrated below:

it is expected that the resonant frequencies of the right-most beam

be lower than the frequencies of the beam at its left. The configu-

rations for which h ( l ) < h ( 2 ) correspond to the previous configurations

by mirror-symmetry and hence the physical resonant frequencies should

be the same for two beams of respectives thickness ratios Ho and 1

Ho

If we switch the "reference beams" on which the material frequen-

cies are based, the same argument holds for the non-dimensional fre-

quency parameters and this provides additional checking for the method

and numerical work. This is the reason for which the fundamental

frequency parameter wI is based on different components in Figure 9.
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The Figure shows very good correspondence of the frequencies in the

mapping of [1, -] into 1i, o].

An additional checking of the quantitative results of Figure 9

can be made by considering Figure 9 (bis). The variation in wl based

on h ( 1) is represented as function of H = h ( 1) and it is seen that

h(2)

for H = 0 the obtained uniting value for w1 is 15.6. This limiting

case is that of a uniform beam simply supported at one end and clamped

at the other, for which the first natural frequency has the exact

value of 15.418; i.e. only 1.2% lower than the numerical value pre-

dicted by the method.

b) A non-uniform helicopter rotor blade (cantilivered beam).

The choice of the present model is related to a more general

investigation of the effects of distributed blade properties on the

stability of hingeless rotors, done by Professor Dowell and Professor

Curtiss at Princeton University for the NASA Ames Research Center.

This project is of recent interest (1973) and includes extensive

theoretical and experimental developments.

In the first part of the investigation, the main interest has

been focused upon a theoretical study of the structural modeling and

determination of natural frequencies of a rotor blade with large

changes in stiffness distribution. The classical Rayleigh Ritz method

using an assumed Duncan polynomial shape (Ref.(38)) fails to give

accurate results if the blade non-uniformity is severe; therefore

the results of the method developed in the present chapter will be
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compared to the results of a more accurate method developed by

Professor Dowell, which is an initial value approach to boundary

value problems (IVBV). An experimental value of the fundamental

natural frequency is also available. The non-uniform rotor blade

under consideration has the following characteristics:

Total length: 48 inches

Span bending stiffness mass per unit length

0 - 4 in 3 x 1061b x in2  0.52x10-31b x sec2/in 2

4 -14 in 24,400 lb x in2  0.66x10-41b x sec2/in2

14 -48 in 3,276 lb x in2  0.35x10-41b x sec2/in2

The fundamental natural frequency of this blade predicted by

different methods is given below:

Rayleigh Ritz Myklestad IVBV Component Experiment
method using (Ref. modes using
Duncan polynomials (49)) Langrange mult.

6.7 cps. 4.45 cps. 4.36 4.37 cps. 4.4 cps.
cps.

The IVBV and component modes method using Lagrange multipliers

are seen to provide the most accurate results and shall be considered

for further comparing the next two resonant frequencies. A summary

of the numerical results is given below in tabulated form.

Natural Prediction of Prediction Percentage
frequency the component of IVBV disagreement

modes-Lagrange (Ref.C49)1

fundamental 4.37 cps. 4.36 cps. 0.23%

second 24.6 cps. 24.2 cps. 0.16%

third 61 cps. 59.3 cps. 1.12%
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The fundamental mode shape is shown in Figure 10 as predicted

by both IVBV and CML methods; the figure shows good quantitative agree-

ment - the largest deviation of 0.07% occurs at around 31 in. from

the clamped end. Similar results are shown in Figures 11 and 12 for

the second and the third mode.

5. Discussion on accuracy and convergence of the method.

The question which most naturally arises when the method is

to be applied to an engineering problem is that of the optimal choice

of the number of components and of the number of modes per component,

in order to obtain good numerical results with minimum computational

effort. It is obvious that no general answer including all possible

cases can be given to this question; furthermore the complexity of

the problem is such that for most of the cases of interest there is

no analytical answer.

The purpose of this paragraph is to develop a two-step procedure

that can be called "modes-component selection" in order to provide a

satisfactory answer to the above question.

The procedure is illustrated on an arbitrary case.

The stiffness distribution along the beam span is assumed to

vary as follows:

I

C-1x

EZ OI

-- -
~II I I
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The method consists in:

(1) Determining first an order of magnitude of the natural frequencies.

For this purpose few components are considered (in order to keep

the size of the eigenvalue matrix small) with no restriction on the

number of modes per component. The number of components is directly

related to the rate of change of EI(x); for instance region (1) can

very well be represented by only one component, region (3) could have

similar representation within reasonable approximation, but more than

one component should be used in region (2).

For the purpose of obtaining only orders of magnitude of the

frequencies, two or three components should sufFice in region (2). Thus

in a first analysis a 4 or 5 components approximation is taken for

the initial beam, which keeps the size of the matrix A of the order

of 6 or 8.

Additional saving in computer time can be made by noticing that

the component in region (3) is much stiffer than the other components

Thus most of the bending will occur in regions (1) and (2); region (3)

is expected to have predominantly rigid behavior. As a consequence,

less free-free modes need to be used for that component than for the

others.

The orders of magnitude of the natural frequencies are now

determined, and we proceed to the second step.

(2) Improving the solution in the neighborhood of each natural frequency.

This is realized by first improving the modelling of the beam,



- 32 -

i.e. increasing the number of components in regions (2) and (3) for

instance.

A reasonable way of improvement would be for example to consider

about six components in region (2) and two components in region (3). At

this point the size of the eigenvalue matrix is increased and thus

more computer time is needed. A way of compensating for this dis-

advantage is to make use of the information provided in the previous

analysis in order to decrease the number of modes used per component

to the strict minimum needed.

The selection of the modes which are to be used for each com-

ponent is made on the basis of the order of magnitude of the corres-

ponding natural frequencies compared to the orders of magnitude

found in the previous analysis.

Such a selection can decrease the number of modes used quite

considerably without any significant loss in accuracy.

Mathematically, this selection can be justified by the fact that

only the reasonably small Fi (n) are to be kept in the analysis. Their

inverses provide the main contribution for the expression of the

Aij(w) and hence for the frequency equation.

It can be anticipated that if problems of non-uniform plates

were to be treated, a more accurate solution would be obtained by

increasing the number of components rather than the number of modes

per component. The reason is that generally only approximate numeri-

cal solutions are known for the modes of an unconstrained plate and

that the precision decreases as the modes get higher. Therefore it
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is better to increase the total number of degrees of freedom for the

plate by increasing the number of componens rather than considering

higher (approximate) modes.
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CHAPTER III

MODAL BEHAVIOR OF A SYMMETRIC FLEXIBLE AIRPLANE

WITH HIGH ASPECT RATIO BEAM-LIKE COMPONENTS.

1. Statement of the problem and basic assumptions

The type of structure considered in this chapter is a flexible

airplane with a high aspect ratio wing.

There are many various possible models which can represent such

a structure, every one of these presents advantages and inconveniences.

When the problem is modeled very close to reality, the components are

represented by fairly complicated elastic structures for which the

normal modes and frequencies are only known with a certain degree of

approximation. These initial errors propagate up to the final result

and there is no guarantee that the modal behavior is determined more

accurately in such analysis. On the other hand if a simpler mathe-

matical model is chosen to represent the structure, the natural fre-

quencies and mode shapes can be determined more accurately but the

resemblance between the physical and the mathematical problem may be

slight. The choice between the two alternatives has been made on the

basis of simplicity and clarity of the formulation and taking into

account the fact that the errors due to physical simplifying assump-

tions are easier to determine than mathematical errors propagating

with the computations. Therefore a simple mathematical model has

been chosen to represent the problem. The aircraft is considered to

be made of substructures (fuselage, wing, tail) which have been approxi-

mated by beams of uniform stiffness as illustrated in the following
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figure:

If "yawing-type" motions (i.e. bending in the y-direction) were

to be considered the rudder should be included as well; for our nur-

pose (transversal bending of the structure), it has been neglected.

The basic assumptions are summarized below:

(1) The airplane structure is considered to be of the beam type.

(2) The displacements of the beam components are governed by the

classical one-dimensional equations (in particular, Bernoulli-

Euler equation for the lateral bending).

(3) The geometrical and elastic characteristics are constant along

the span for each component. This last assumption can be relieved

using the approach of Chapter II.

2. Rigid body analysis (small amplitude motion about the initial con-

figuration)

Notations:

R : Gallilean frame of reference0

G: Center of gravity of the structure

r (G/R ): Acceleration of the center of gravity with respect to R
o o
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i0: yaw angle in the rigid motion

@: roll angle in the rigid motion

: pitch angle in the rigid motion

, , 4 are the classical Euler angles)

((S)/R ): angular momentum of the structure with respect to R
o o

11' 2' 3: principal moments of inertia

In absence of exterior forces Newton's law yields.

(total mass) r (G/Ro) = 0 (15)

This relation decouples the translations in the three directions

from the rotation motion abound the center of gravity.

For zero exterior torque the angular momentum equation is simply:

d H ( S)/R ) = 0 (16)
dt

Because of the symmetry of the structure, x y z are prin-

cipal axis of inertia with respectif moments of intertia Il, 12, 13

and therefore the linearized equations of motion of the rigid body are:

I1 0 = 0 (17)

12 0 = 0 (18)

13 = 0 (19)

This set of equations shows that the roll, yaw and pitch motions

are all decoupled from each other and that the corresponding natural

frequencies are zero.



- 37 -

The same type of considerations apply in the elastic domain be-

cause of the symmetry, as will be seen in paragraph 3.

The study of the decoupled motion of "yaw-type" is not included

in the present analysis, as mentioned before.

3. Elastic modal behavior ; derivation of the frequency equation

a) Statement of the elastic Droblem:

degrees of freedom, derivation of the constraint equations

As the motions investigated are of both roll and pitch type,

each of the substructures has to be allowed to undergo transverse

bending and twisting as well.; Although it is sufficient to con-

sider only rigid twisting for each component, the analysis will be

developed for the general case in which the torsional stiffness

of each conponent is finite. The previous case will then be a simpli-

fication of the latter.

We develop a Rayleigh Ritz analysis by defining:

- for the fuselage: - L < x < L

The bending displacement W (x, t) sought in the form:

W (x, t) = E Qn (t) n (x) (20)
n=l

The twisting angle- 0 (x, t) sought likewise:

® (x, t) = E Pn(t) n (x) (21)
n=l

- for the wing: - 1 <

The bending displacement W1 (y, t):

W1 (y, t) = Z qn(1) (t) n (y) (22)
n=l
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The twisting angle o 1 (y ' *t)

S(y ' t) P (1) (t) a (y) (23)1=l n nn=l

- for the tail: - 2 <  2

The bending displacement W2 (y, t):

(2)W (y, t) E=l q (t) 4. (y) (24)
2  n= n n

The twist angle 02 (y, t):

SPn(2)

9 (y, t) = (2) (t) 8 (y) (25)2 n=l n n

The physical displacement of each component, respectively at y = + C, x

x + C , x = x - x + c , Is given by:
1 1 2 1 2

Wphys (x, t)= W (x, t) + c '9 (x, t) (26)

A'phys (y, t) = W1 (y, t) + c 1  01 (y, t) (27)

;4,phys (y' t) W2 (y, t) + c2  2 (y, t) (28)

Where c, cl, c2 are the half chords of the respectif components.

With suitable non-dimensionalization x = L 5 eq. (26) yields:

Wphys (E,t) W (C,t) + P 0 (5, t) (29)

L L L

and by similar changes of variables

Y = 1 n and y = f2 n for equations (27) and (28) re-

spectively, they become:
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W 1 phys (, t) W1 (n, t) c I  01 (n,' t) (30)

1l i1 I1

and

W2 phys (n, t) W2 (n, t) c 2  02 (n, t) (31)

12  2 12

In agreement with the one-dimensional treatment of each substruc-

ture, it can be assumed that c, cl and c2 are negligibly small,

L I1 f2

in fact small enough so that

c 0 (C, t)<<l for any E -1 < 5 < 1
L

c 1  01 (i, t) <<1 for any n -1 < n < 1

c 2  02 (p, t) <<1 for any n -1 < n <

2

As a consequence, the corresponding second terms will be neg-

lected on the right hand side of equations (29), (30), (31). The

physical displacements at the joints between the components must be

equal, and this leads mathematically to the constraint conditions:

Wphys ( l' t)= W1 phys (0, t) (32)
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Wphys (2' t) = W2 phys (0, t) (33)

or, by using (29), (30), (31):

W ( 1, t) - W1 (0, t) (34)

W (E2' t) = W2 (0,, t) (35)

The equality between the slopes in the x and y directions has also

to be enforced as part of the constraint conditions and leads to the

equations:

0 ( 1" t) = 1 W1  (o, t) (36)

0 (E2' t) = 1 aW2  (0, t) (37)

for the continuity of the slope in the x - direction, and similarly

1 aw (1' t) = - 01 (0, t) (38)

L 5E

1 aW (E2' t) = - 02 (0, t) (39)

L 2

for the continuity of the slope in the y - direction.



- 41 -

b) Derivation of the frequency equation

The total kinetic energy of the structure is

L L 11.

T = 1 (I 2(x, t) dm + I 2 (x, t) dx + W1 2(y, t) dm1
2 -L -L 1

1 2 2
+ f 1  1 (y, t) dy + W2 (y, t) dm2

1 2

2

+ 12 2 (y, t) dy ) (40)
-2

where I, l' i2 are the fuselage, wing and tail mass moments of

inertia per unit length about the torsional axis. In particular

r = fus ( + z2) dy dz

fuselage
cross-section

IP n (x2 + z2) dx dziPwing wing

cross-section

2 tail (x + z 2 )  dx dztail

cross-section

By substitution of the corresponding expansions for each of the

bending and angular displacements and because of the orthonormal
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property of the bending and twisting modes, equation (40) becomes:

S2 2 (1)T = I (M Z Qn (t) + I tL Pn (t) + M1  qn (t)
2 n=l n=l n=l

00 2 00 2 m 2
P(1) + . (2)2

+ 11 1 E Pn (t) + M2 E qn (t) + J 2 2 P(2 (t) (41)
n=l n=l n=l

where

M, MI, M2  are the half masses of the fuselage, wing and tail re-

spectively (i. e. mass/unit length x half length)

Likewise, the total potential energy is the sum of the potential

energies of the components:

L L

U = 1 [ E / (a2 )2 dx + GJ f L0 2 dx +
2 -L 2  -L C

Dx ax

(.EI) 1 / 2 dy+ (GJ) / 1 2 dv +

-1 ay -11 Dy

I2 2
( EI) 2  2 ( 2dy + (GJ)2 / ) 2 (42)

-2 Dy2  42 D'

where

I, I1, 12 are the corresponding structural moments of inertias

about the neutral axes given by

I= ff z2 dy dz

fuselage
cross section
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I = ff z dx dz

wing
cross-section

I =ff z dx dz
tail
cross-section

E and G are the Young and shear modulus of elasticity (related by

G = E ) and J is a constant which value depends upon the

2 (1+v)

shape of the beam's cross-section.

In particular, useful values of J are tabulated in Ref. (39).

(GJ) is the classical twisting stiffness.

By expansion of the bending and angular displacements and use of

the corresponding beam equation, equation (42) leads to:

0C 22 2 2
U= 1 ( EI r k4 2 P (t) +U= 1 ( El E k Qn (t) + GJ E (n-1) n

2 3
L n=l L n=l 4

2 to 20 44 (1) 2 (2)
( qn (t) + (GJ) E (n-l)1 T P (t) +31 n

3 n=l 1 n=l 4

(EI) E k 4 (2) 2 2p (2)
(EI) k (t) + (GJ) E (n-l)2  P (2)(t) ) (43)

2 n=l n2 n=l 4 n

The constraint conditions have been previously derived and they

are given by equations (34), (35), (36), (37), (38), (39). Substitution
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of the displacements in terms of the component modes yields:

E (Qn ( t )  n ( 51 )  qn ( ) (t) n (0) ) = 0 (44)
n=1

E (Qn (t) nn( C2 q n(2) ()'n (0) = 0 (45)
n=l

E (Pn (t) @n( ) - q (t) ' (0) ) = 0 (46)
n=l

(P (t) (  ) - q( t ) (t) ' n(O) ) = 0 (47)
n=l

E (Qn-t)'n( 1 + p n (1) (t) en(0) ) = 0 (48)
n=l

E= (qn (t) ', (2 + p n(2) (t) 0n(0 ) ) = 0 (49)
n=l L

The Lagrangian of the total elastic system is then:

6 th
L = T - U + E X. x ( i constr. equation) (50)

i=l 1

where T and U are given by equations (41) and (43).

As mentioned in Chapter II, the Lagrange Multipliers provide

effective information, namely:

x1 and X2 give the shear forces developed at the joint between the

fuselage and wing and at the joint between the fuselage and tail

respectively, in motions of plunging type.

x3 and X4 give the torque developed at the two joints respectively,
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in motions of rolling type.

x5 and X6 provide similar information for motions of pitching type.

.By use of equations (41), (43), (44) - (49), equation (50)

leads to the Lagrange's equations

M Q n(t) + EI kn Qn(t) - 1 4(g) - 2 n(S -
L3

X5 V n(l) - 6 ¢ n(2) =0 (51)

L L

2 2
L P (t) (GJ) (n-1) 7 P (t) _ 3 - n (E )

L 4

X4 n (2) =. (51 bis)

(1)t 4 (1)M1  n (t) + (EI) 1 k n qn (t) +X n(O) + '3 n(0) =0 (52)

3
1 1

S (1 ) (t) + (GJ)1 (n-l)2 T P ( 1 ) ( t ) - 5 0(0) = 0 (53)

11  4

(2) (2)M 2 q n (t) + (EI) 2 k n qn (t). + x2 mn () + x4 ' n (0) 0 (54)

2 3  £2

1212 Pn(2)(t) + (GJ)2(n-l)22 n ( 2 ( t ) - Xn() = 0 (55)

2i 4

The harmonic time dependence in the normal analysis is taken in the

following form:
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Qn(t)

qn (1)(t) qn (1)

qn (2t) (2) (EI) 1/2
i ( E ) t

Pn (t) Pn M ll 3

p (1)(t) P (1) xe

p (2)(t) P (2)
n n

1/2(EI) 1

11

A2(t) 3 3 wt

)3 (EI)1A4(t) j X 2 3

s (t) 1- (EI)11
2 e

A6 (t) X 11

and the following notations are introduced:

M1 ; M2  2; 22- Y = m Y2
S2 M 1

M111  ; M1 L ; M1 LV " V2 - V =
1 I 2 I  3 21 2
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EI GJ (GJ) 1

ML 3 I L2

(EI) 1  (EI) 1  3 (El) 1

M1 3 M1 3  M1

(EI) 2  (GJ) 2

M 2 2
3  12  2

(EI)1  (EI)1
M1 13 M1 13

F (1) 2 4
n - nI k

2) 2 2 2

Fn -2 (n-1)2

4

3 2 4F (3)= - k 4
n n

(4) 2 2 2Fn 4 - i 3 (n-i) 2 T

4

(5) 2 4
n n

Fn = , - (n-1)2
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The generalized coordinated are then expressed in terms of the Lagrange

multipliers as follows:

n 1= - (l n ( 1) +  
2 n( ) + X l 'n() +

F (1)
n

SY 'n(2) )  (56)6 1 n 2

F (1)
n

Pn = - Y1 1 ( (3 8n ) + X4 n 2) ) (57)

F (2)
n

q, 1 n (O0) + X 3  'n (O) (58)

F (3)
n

n - v2 1  5 8n(0) (59)

F (4)n

- (2)
qn = 12 ( 2 n ( 0 ) + X4 Y2 C'n(O) )  (60)

F (5)
n
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n(2) = 2 3 6  n() (61)

F (6)
n

Note that P (1) and P (2) are proportional to e (0) and hence they have

zero value for all the odd modes; as a consequence the angular twist for

the wing and tail has an even distribution along the span as expected

from the geometrical symmetry.

The eigenvalue equations are found by substitution of equations

(56) - (61) into the constraint conditions (44) - (49) and form a set

of six linear algebraic equations in the Xi given by:

S l ( n ( +  2 n (1 n (2) + 5 Y1 in (1) n 1)nl

F (1)
n

+ 6  1 l n( l n( 2 + A1  2 (0) ) (62)
=0

F (1) F (3)

1 1 1 n5l n(2 )  + 2 n2 )  - nl n2

F (1)

61Yn(2) 'nl2 + 2  n 2 (0) ) (63)
=0

F (1) F (5)
n n
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E (y1 1 3 n 1 l + X4 1) nnE 2) ) + 3 n (0 ) ) = 0 (64)
n=l

F (2) F (3)
n n

. (Y1 v1 ( A3 en(~ 1) n(2) + 4 n2 )n +n=l

F (2)
n

2Y2 -4 4 ' n 2 (0)) (65)
= 0

F (5)
n

E (p- 1 '1 n( )  An( + 2 ) 2 n(Y + -SY1

F (1)
n

n 2( 1)  + -6 1 ' n(E1 n( 2)  + lv2 T5 en2 (0) ) (66)
=0

F (1) F (4)
n n

E1 Y1 1 "1 n1 n 'n(n 2 + -2 ,( 2 'n( 2) + T 1

F (1)
n

n-' n2 6 (2 E + n2() ) (67)

'n(__ _ n(_2 + _6YI __n 2_I2_ 3  (0)

Fn  F (6)

n



- 51 -

or, in tensional form
-> -*

A(w) X = 0 (68)

where A is the six-dimensional vector of components -. and

A(w) is a symmetric tensor of order six which elements in matrix

representation are:

all ( )n 2 + n 2(0)
n=1

F (1) F (3)
n n

a12 1 n(S)  n 2)
n=l

F (1)
n

A13 14 0

15 P1 1 n 1 n 1n=1

F (1)
n

16 ll Y1 Y n(l n(2 )
n=

F (1)
n

A 2 2
22 =1 n 2 + P2 n (0) )

n=1

F (1) F (5)
n n
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23 24 = 0

25 E l Y1 'n(El ) 1 n(2
n=1

F (1)
n

ao

A26 = 1 n 2 n 2n= 1

F (1)
n

oa

33 1 1 8 2 ( + n (0)
n=l

F (2) F (3)
n n

a

A34 = '1 V1 
0"nnl) n (2)

n= 1

F (2)
n

35 36

00

A4 4  = =1 (Y1 '1 2 ( + t2 2 222 n (0))n 1 1

F (2) F (5)
n n

45 46 = 0

55 n (Pl 1 2 n2 1 V 2Y 1  2 (0)

F (1) F (4)
n n
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A5 6  = n1 ) n ' n( 2)
n=l

F(1)
n

A Y 2 2 Q 2(),66 n=i 1 n 2 + 1 Y2 '3 n2 (0 )  )

F (1) F (6)
n n

Equation (68) has solutions only for the values of w for which

det (A() ) = 0 (69)

and these values are precisely the non-dimensional resonant frequencies

of the structure.

Eq (69) can be written more explicitely,

11 12 15 16

A A 0 0 A A
A12 A22 2O 0 25 A26

o0 0 33 A34 0 0 = 0

0 0 A34 A44 0 0

15 25 0 0 A55 56

A16 A26 0 0 A56 A66

or, by simple algebraic manipulation,

11 12 s15 16

(A3 3 A44 - a3 4 )

12 22 a25 26 = 0

A16 A26 56 66 (70)
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The decoupling between the rolling and pitching type of motion

found where the rigid behavior was investigated is also valid in the

elastic domain as shows equation (50) and therefore the two types of

motions are to be studied separately.

The natural frequencies of the motions of rolling type are solutions

of the equation

( A4 4 - 2 2) = 0 (71)

In such motions the fuselage undergoes only angular twisting and

the wing and tail undergo anti-symmetric bending.

The pitching type of motion has natural frequencies given by :

11 A12 A15 a16

12 A22 A25 26 = 0

A1 5  A2 5  A55 A5 6

A16 A26 56 66

The fuselage bends only, while the wing and tail bend and twist as

well.

c) Accuracy of the method

As part of the analysis relies on numerical computations, the

question of accuracy is a consequence of precisely these computational

errors.

The sources of error are:

1) The fact of considering a finite number of modes for each component
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in the Rayleigh-Ritz analysis

2) the fact of solving with approximation the frequency equation,

det (A (w) ) = 0

3) the fact that the various computer subroutines used in the numerical

analysis have errors inherent to the way in which they have been

written.

This last type of error can be eliminated by using Double Precision

in the computation or Extended Precision if needed, and hence will not

be accounted for in the accuracy analysis.

Let det A.. ()( be the approximation of A.. (w) when N modes
1J 1.

per component are considered. Then

a.. = (W + C (W) (73)1  1 1J

where .ij (w) is mainly the next-order term in the serie giving Ai (w) i.e.

ththe term due to considering the Nt h + 1 component modes. These errors

propagate into the determinant in a way which can be determined by

substituting equation (73) into equations (71) and (72) respectively.

For the motions of the rolling type this substitution yields:

(N) (N.) (N)2) + (N)E N) 2A (N) +

33 44 34 33 44 44 33 34

higher order terms = 0

which can be written in the form:

Det + E(N) = 0 (74)
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where

Det CN)A (N) (N.) (N
= A33 44 A34

is the determinant actually computed in the finite mode - approximation and

A3 (N) + (N) 2A
33 N 44 +  44 ( 33 34 44

is the truncation error.

Hence, instead of solving the exact frequency equation, one solves

in fact

Det (N) ( = 0 (75)

Furthermore, the numerical solutions wn do not satisfy equation (75)

exactly, but satisfy in fact

Det (N) (W) = (76)

where the values of E are known and inherent to the trial
and error process. Therefore the question that naturally arises

is: given the numerical errors listed above, how different is
the exact solution (e) from the solution Wn actually

computed?

Let o(e) be an exact natural frequency satisfying equation (71),

Wo the approximated value of mo ( e).

Let

Det (w) = A3 3 (w)A 4 4 (w) - A34 (w) = Det (N ) + E (N )

A 1-term Taylor expansion of Det (wo(e )) gives:

Det ( (e)= Det ( wo + ( o(e) Wo) , Det

aw o =O
0
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and since Det (w (e ) = 0,

(e) Det (wo)
w- o
o o

aDet
aw wo

(e) De(N ( ) + E (N)(W (77)
' -= = - (77)
o o

.aDet(N) aE(N)

aw w=o w W=W
o o

All terms in the right hand side of equation (77) are known:

E, as mentioned before is known in the trial and error process of

solving Det (N)() = o

E(N) A (N) (o) (CO) + (N)(E 33  ) - 2 A3 4 (N)(w
0 33 0 44 0 44 o 33 o 34 o

E34(%)

(Nacan be explicitely computed from the values of the A.i and E

which are known,

Det(N) aA3 3(N) 44(N) o 33(N)o) aa44(N)

aw W=W0 D0 =W a W=W0
o o o

- (N) ad4 (N)-2 A34 (o I

o

is then explicitely known, and so is



- 58 -

E(N) 3 (N) 4 4 (Wo + A3 (N) ( ) 3E44
44 o 33 0

w w 4w w=w
o o

- 2 a 34(N) 34(o ) - 2 (34(N)V ) a34

o o

Thus, equation (77) gives an analytic determination of the first order

error for the natural frequencies in motions of the rolling type.

It is interesting to note that equation (76) also shows that

n(e) _ I increases with n , i.e. the lower modes are obtained

with higher accuracy for a given number of modes per component. This

fact is expected, in a way similar to the convergence in a pure Rayleigh

Ritz analysis.

This statement is proven as follows:

The Aij (N) (w) can be written in the following form:

N C ij(N) n ijA.. (w) n with D n >0
1] nn=l

2_D ij
n

(N)
hence A.. (w) are of the order of 1 for any i, j. and same

2
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conclusion is valid for the

/ ijC
s.. (W) CN+1ij 2 ij

-DN+ 1 l

(N) 3C.
The respective derivatives ij and 13ij are then of the order

3w aw

of 1 Hence Det (N) (w) and E(N) ( ) are of the order of 1 , and
3 4w w

9Det (N) and aE(N) are of the order of 1

aw aw w

From equation (77) it follows that Iw n(e) - w is of the order

of wn, thus increasing with wn.

The initial truncation errors and the approximations of equation

(76) propagate also in the value of the Lagrange multipliers as follows:

The non-dimensional Lagrange multipliers corresponding to the

antisymmetrical rolling motions, A3 and X4 are solutions of:

A3 3 (w) '3 + A3 4 (w) A4 = 0 (78)

A3 4 (w) X3  A4 4 (W) T 4 = 0 (79)

By letting X3 = 1 in equation (78) ,

A 3 3 () (80)

4 34 ( )

and this solution substituded into equation (79) leads to:
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A3 3 (w) A4 4 (W)

3 2

a34(W)

which, for each natural frequency wn computed, can be written:

Det (wn)

13 + 2
A34 (Wn)

or, at the first order,

Det (w) + E (w

3 = 1 + (N)2 (N)

A34 ( n ) + 2A34 (Wn) E34 (Wn)

It follows that the first order error in the value of X3 for the

resonant freq. wn is:

Det(N)( ) + E(N)(W)
E (N)2 (N)
X 3  A34 (wn ) + 2 A3 4 (n) E34(wn)

which can be written also by using a one-term binomial expansion

Det(N) (n) E (N) (n) 2 E34(n)

E = 2 (+E a (N) 2 (N) (N)

3 34 (Wn) Det (n) A34 (n

Equation (80) gives explicitely the first order error in the value

of X4 by similar algebraic manipulations:
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(N)
E33(n) + a33 (W ) E34(Wn )

E a(N) (N)
34 (Wn) 34 (Wn)

From equations (58) and (60) it follows that E_ (1) is pro-

portional to E and E (2) is proportional to E for each natural

3 qn 4

frequency (with obvious notations for E (1) and E (2)), and hence

n n

the initial errors are finally propagated into the mode shapes of the

wing and tail as follows:

E (w p' (0) p (n) (81)
n) p p

Ew (1) (0) = E
n p=l (3)

p (n)

E_ (wn) ' p(0) p (n) (82)

Ew (2) ( ) = Z
n p=l (5)

p (n

Of course, Ew (1) (0) = Ew (2)(0) = 0
n n

From equation (57) E_ is explicitely computed:
Pn

Yl1 1 (E en (l) + E 4 ( 2

E =3 4

Pn F (2)
n
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and thus the error in the angular twist of the fuselage for the

natural frequency wn is given by:

(E (w) 0p ( 1) +.E (wn)0p(Y ) 6p(F) (83)

En () 
1= - 1E 3 4

n 1 p=l F (2) (n)

The accuracy on the actual physical displacements can be computed

from equations (29), (30), (31) with c, cl and c2 = o(l)

L 11 12

and by using equations (81), (82), (83).

The error analysis for the motions of pitching type is far more

complicated as shows equation (72) and it is faster to draw a conver-

gence graph versus the number of modes used for a given natural fre-

quency than to obtain analytical expressions for the errors by the

procedure explained previously.

Furthermore, an idea of the order of magnitude of errors of the

type given by equation (76) is given at the first step by the process

of trial and error itself as follows:

The corresponding det (m) is plotted versus w and the regions

where det (w) changes sign are considered. For a case such as the

one illustrad below

)~ T W



- 63 -

where det (w) has steep variations in the neighborhood of the

natural frequency, values such as wl and w2 are a good approxi-

mation of wn despite the fact that neither det (wl) nor det (w2)

are close to zero.

The frequency solutions in such cases are quite accurate, however

the values of the Lagrange multipliers (and hence the modal shapes)

are given with less accuracy precisely because of the fact that

det (wl) or det (w2 ) are not small enough for this purpose.

If the opposite case occurs in the neighborhood of a natural

frequency:

i.e., det (w) has a locally small slope, even though det (wo) and

det (w ) are very close to zero, wo and w'o do not bound the resonant

frequency very accurately. However, the mode shape and the informa-

tion of structural type are given with better precision.

Situations of the first type tend to occur for the lower natural

frequencies and smoother variations of det (w) are seen for the higher

frequencies and thus the corresponding conclusions can be drawn.

d) Results and convergence study in a check case

As in the previous chapter, the theoretical and numerical part
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of the method are first checked with classical results known analyti-

cally.

The reference case is taken to be a cantiliver beam which can

be considered a particular case of the airplane - like configuration

in the following manner:

Values of the parameters Physical significance

1) C1 = 2 = 0 both the tail and the wing are placed

at the middle of the fuselage

2) V1 0 for rolling type of the fuselage is given an infinite

motions inertia in twisting

1i 0 for pitching type the fuselage is made infinitely heavy

of motions

2 - for rolling type the fuselage is made infinetely rigid

of motions in twisting

1~ m for pitching type the fuselage is made infinitely rigid

of motions in bending

The set of parameters in (2) is such that the fuselage is con-

strained to stay still, i.e. clamp the wing and the tail in both kinds

of motions. In fact, mathematically one could have allowed 1 and 42

to be finite.

For the sake of simplicity the two beams representing the wing and

tail are also made identical by taking

U2 =Y2 = 4 = 1 for the antisymmetric motions

2 = V3 = 44 =Y2 = 1 for the symmetric motions.
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Vibrations of rolling type:

~ =0 - A34 = 0
1 A 2

p4  33 44= n (0)
n=l1

2 4
w - k

n

and hence the frequency equation is:

z 'n2 (0) ) = 0(84)
n=l

2 4
w k

n

i.e. the frequency equation in the case of a beam clamped in its

middle, in an analysis using only antisymmetric free-free modes

(see Appendix III).

Of course, all solutions wof equation (84) are in fact double roots

as we have two identical cantilever beams in vibration. Note that in

the analysis developed in part b) the non-dimensionalization has been

made using half-length of the wing, hence there is no adjusting factor

to be computed for the non-dimensional frequencies. Figure 13 shows

the rate of convergence of the first natural frequency towards that

of a cantilever beam versus the number of antisymmetric modes used;

the convergence is very fast for the first few modes. Furthermore

the shapes of the first three modes have been obtained using ten anti-

symmetric modes in the analysis and they are plotted in Figure 14,

15, 16. The frequency bounds are given by the analyses developed in

part c); the percentage errors are almost equal for the three natural

frequencies (4.1, 4.2 and 4.5 respectively). The values of the slopes
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at the origin is given as an indication of the modal shape accuracy.

Vibrations of the pitching type

With the limiting values for the parameters given previously,

A E n 2 (0)
ll 22 = n=l

2 4
w - k

n

12 15 16 = 25 = 26 = 56 0

2E 6 (0)
a55 A 66 n=l n

w- (n-l) Tr

The frequency equation becomes in this case:

E n2(0) )2 en2(0) ) 2 = 0
n=l n=l2  4 2 2 2n - k 4 - (n-1)

n
4

The first factor corresponds to the bending modal behavior of

a beam clamped in its middle, the second factor corresponds to the

cantiliver beam in twisting (see Appendix III).

As expected, the bending and twisting motions are decoupled

from each other. The convergence rates towards the first clamped-

free natural frequency respectively for bending and twisting are

both shown in Figure 17 so that they can be analysed comparatively.

The percentage error in the first bending frequency computed



- 67 -

using symmetrical modes only decreases very fast to zero in fact much

faster than in the case in which only odd modes are used. This result

is to be expected as the natural frequencies of the even modes are

lower than the ones of the odd modes.

By comparison there is slower convergence in the torsional

modes and Figurel8 which represents a more extensive graph of the

twisting convergence shows that in order to get 0.9% error in the

non-dimensional frequency (precision attained with only 3 symmetric

modes in bending), 21 torsional modes have to be included in the

analysis.

This fact is surprising as there is no physical reason for

which it could be expected, however, it can be justified on mathe-

matical basis.

Consider the finite N-termes frequency equations:

C 2 (0)
P() = n=l 2 4 85)

--k
n

and

2
= n (0) (86)

Q(W) = n=1 2 2 2 = 0
w - (n-l) T

and the first natural frequency corresponding solutions w1 and Q1

The problem is that of determining how much will wl and 1 change

by considering one more term respectively in the analysis, or equiva-

lently, how much will P(w) and Q(w) respectively be modified by use
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of the additional term.

By separating the rigid body contributions in bending and torsion

we can write P(w) and Q(w) as follows:

N 2 (0)
P(w) = 1 + E n (87)

2 n=3 2 4
n odd -

N
Q(w) = 1 + E 1 (88)

2 n=l 2 2 2
2w w - ni

The Nth + 1 terms in each of the equations (87) and (88) are:

(0)

N+1
2 4
S- kN+l1

and

1
2 2 2

- (N+1) r

For n > 5 , 9n(0) > 1 and pn+1(0)>n (0) 7n, hence for N >, 4,

2
iN+2 (0) 1 (89)

2 k 4  2 -k
N+2 N+2

Also, kN+2 > (N+) and henceN+2
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1 > 1
2 4 2 22

+ -k 2  w - (N+1)2r

By use of this result together with inequality (89) it follows:

N+2
2 4 2 2

w k -(N+)2

This inequality shows that an additional bending mode in the

analysis provides more contribution (in fact much more contribution)

to P (w) than an additional twisting mode in Q(w).

Thus the value of wl will be more significantly modified by an

additional mode than the value of l."

This explains the relatively slow convergence rate of the tor-

sional frequency by comparison with that of the bending frequency.

Furthermore, this result suggests that for the next investigations

more modes should be used in twisting than in bending (in fact quite

a large number of modes). This fact does not present any noticable

inconvenience however, as it corresponds just to performing more

additions; from the point of view of computer work, the additional

time and region necessary are negligible.

4. Experimental work

a) Introduction

The idea of a completely unconstrained structure presents no con-
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ceptual or theoretical difficulties, however, practical problems

arise when such a structure is to be simulated in the laboratory.

For experimental purposes the specimen has to be supported, and

thus one of the first problems which is .to be solved in the design

of the experiment is that of finding a suitable type of supports

which characteristics will not affect the resonant frequencies of

the structure. In particular, for the present analysis care has

to be taken that neither the natural frequencies of motions of

rolling type, nor the frequencies in the pitching motions will be

changed by the type of supports used.

The next subparagraphs describe the experimental model, the

type of supports which simulate its free motion and the experimental

setting.

b) Experimental model

The beam-like structure on which the experiments have been per-

formed is shown in Figure 19. The components are aluminum alloys

beams of rectangular cross-section and following characteristics:

beams (1) and (2) beam (3)

length 10 in 10 in

width 0.5 in 0.25 in

thickness 0.1 in 0.05 in

E 107 Ib/in2  107 lb/in 2

v 0.33 0.33

p 0.1/385 in/n/sec 85 2  0.1/385 b/in 2/in/sec 2

The values for E, v, p are taken from Ref (40).
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Beams (1) and (2) are mounted perpendicular to each other on

their middle, beam (3) is mounted parallel to beam (2) at 3 in. dis-

tance from it.

Small steel coupons are mounted at :one of the tips of each com-

ponent so that the structure can be excited at various tip locations

by a magnetic transducer.

c) Choice of the optimum supports

The experimental model with the two identical supports is shown

in Figure 20. The elastic supports at both tips of beam (1) have been

perfectly alligned so that they do not affect the rolling of this

beam. The constraining effects on the bending motions of the beam

have been minimized by a proper choice of the spring constant, proceed-

ing as follows: the idea is to choose the springs soft enough so that

the frequency of the rigid body translation of the model resting on

the two springs is much lower than the lowest free-free bending fre-

quency of beam (1).

This lowest frequency is found to be of the order of 200 cps.

and with the choice of a spring constant equal to 0.5 lb/in,

the frequency of the corresnonding rigid body translation is of

9.5 cDs. The value of the sDring constant is related to that of

the frequency of .the rigid body translation by

2k = Mw , where

M is the mass of the specimen

k is the spring constant

w is the dimensional frequency (rad/sec) and the factor 1
2
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corresponds to the fact that the two springs are identical.

d) Experimental setting

The set up of the experiment is shown in Figure 21 and more

detailed explanation is given in the sketch which follows:
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The oscilloscope has a double beam feature and a polaroid

camera connected to it, so that the input and output signals can

be compared and picture information recorded.

Two types of resonances were found as shown in Figure 22, and

labeled type a and B.

The lower part of the Figure 22 shows a resonance of type a:

the output signal (lower beam) is seen to be at -900 phase with the

input signal.

The upper part of the Figure 22 shows a resonance of type B:

the output signal on the lower beam now precedes the input signal

by 900

e) Frequencies measurements

Three sets of measurements have been performed with the follow-

ing positions for the driver and pick up:

set of measurements (1)

Both the driver and pick up are at the tips of beam (1); the

driver is positioned farthest away from beam (3), the pick up is

placed at the tip closest to beam (3). With this arrangement the

following resonant frequencies were detected in increasing value:

62 cps weak signal type a

112 cps weak signal type a

361.1 cps strong signal type a

480 cps strong signal type a

575 cps weak signal type a
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set of measurements (2)

The arrangement is as shown in Figure 21; the driver and pick

up are at each of the tips of beam (2). The measured resonant

frequencies are:

32.5 cps weak signal type B

62 cps weak signal type a

110 cps weak signal type a

264 cps weak signal type B

489 cps strong signal type

575 cps weak signal type a

578.7 cps strong signal type B

set of measurements (3):

The arrangement is similar to the previous case, however, the

driver and pick up are positioned now at the tips of beam (3).

Because of the larger flexibility of this beam, the resonant frequen-

cies were easier to detect and in fact this set of measurements is

considered to be the most satisfactory of the three. The following

resonant frequencies were detected:

32.5 cps strong signal type B

62 cps strong signal type a

112 -cps weak signal type a

264 cps strong signal type B

361.1 cps strong signal type a

480 cps strong signal type a

489 cps weak signal type B
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575 cps strong signal type a

578.7 cps strong signal type

As it can be seen, many natural frequencies were found in more

than one set of measurements; very often their value agree axactly

from one measurement to the other, for the few frequencies for

which this is not the case the data corresponding to the strongest

signal on the screen of the oscilloscope have been retained.

Tabulated below is a summary of the measured resonant fre-

quencies, the way in which they have been detected and their type.

natural driver's pick up's

frequency position position type

32.5 tip of beam (3) other tip of beam (3) 6

62 " " a

112 tip of any beam other tip of the a
same beam

264.3 tip of beam (3) other tip of beam (3) B

361.1 " a

480 tip of beam (1) other tip of the a
or (3) same beam

489 tip of beam (2) other tip of beam (2) B

575 tip of beam (3) other tip of beam (3) a

578.7 tip of beam (2) other tip of the 6
or (3) same beam

The resonant frequencies of this beam-like model have also

been investigated theoretically, and the next paragraph deals with

the numerical results which have been obtained and the conclusions

which can be drawn from the comparison with the experimental work.



- 77 -

5. Numerical analysis for the experimental model: theoretical results,

comparison with the experimental results

We remind the reader at this point that although the numerical

results are presented with the frequencies in increasing order for

easier comparison with experimental data, the frequencies of rolling

type and pitching type of motions have been obtained by independent

computations as discussed in paragraph 3. This factor will be taken

into account however, in the quantitative analysis.

The lowest computed natural frequency is w1 = 36.7 cps and the

physical deformation of the structure is shown in Figure 23. In this

mode beam (1) undergoes only angular twisting; beams (2) and (3)

bend antisymmetrically, predominantly in the rigid mode. The value of

this resonant frequency can be related to that of 32.5 cps. measured

experimentally; as it can be seen in Figure 23 this resonance could

not be detected in the first set of measurements. A comparison bet-

ween the amplitudes of the rigid body rotations of beams (2) and (3)

shows that reason for which a stronger response has been obtained where

the driver and pick up were both placed at the tips of beam (3).

The value of the second calculated natural frequency is w2=69 cps;

as shown in Figure 24, the modal behavior is of the pitching type:

beam (1) rotates as a rigid body, beam (2) undergoes weak bending in

the first symmetric mode, and higher amplitude bending of the same

shape (but opposite sign) is observed for beam (3).

The corresponding second resonance measured experimentally

occured at a driving frequency of 62 cps (with the strongest response

in the third - set of measurements); it is interesting to notice that
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this resonance has been found experimentally to be of different type

than the previous, specifically of the type a. It can be anticipated

on these basis that resonance of the type a will correspond to motions

with symmetric behavior of beams (2) and (3) while type B resonances

will be characteristic of the "rolling motions". In the third mode

(for which the computed value of the frequency is w3 = 125.6 cps) the

deformation of each component is similar in shape and amplitude (see

Figure 25); this resonance has been detected in all three sets of mea-

surements, and found to occur at a frequency of 112 cps. Note that

indeed it corresponds to a type a deformation.

The next higher natural frequency has a theoretical value of 295.5

cps; Figure 26 shows the deformation of each component and it can be

seen that in this second rolling mode both beams (2) and (3) do show

an elastic behavior. The corresponding measured value of the frequen-

cy is of 264.3 with strongest response picked up on beam (3); indeed

it is a resonance of type B.

The next four natural frequencies obtained theoretically and the

corresponding modes are shown in Figures 27, 28, 29, 30, 31, respectively;

similar analysis show qualitative checking between theoretical and

experimental results. As the comparison shows good qualitative agree-

ment, it is of interest to further investigate in a quantitative

manner the agreement (or diescrepancies) between theoretical and ex-

perimental results. For the time being the quantitative analysis will

be done separately for the modes of rolling type and pitching type, as

the theoretical results have been obtained by independent computations.
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The results are given in tabulated form for clarity, and shown below:

Modes of rolling type:

W n percentage error
n n normalized by the experi-
theoretical experimental mental data (%)
(cps) (cps)

36.7 32.5 11.5

295.5 264.3 11.8

546.6 489 11.6

648.2 578.7 12.0

At first view the percentage error seems to be too high for

being satisfactory; further analysis shows, however, the interesting

fact that this error is constant for the four frequencies. This remark

suggests that possibly nart of the error comes from the differ-

ence between the exact and assumed characteristics of the exneri-

mental model. If this is true then better agreement should be

provided by comparing the. two sets of frequencies in a non-

dimensional manner. This can be achieved by comparing the ratios

(Wn/W ) theoretical and (n/W 1) experimental as shown in the table:

(Wn) (w ) Percentage error normalized
nby experimental data

W1 theoretical W1 experimental

1 1 --

8.05 7.93 1.6

S14.89 14.67 1.5

17.66 17.36 1.7
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Column 3 illustrates that the previous assumption was correct, but

at least two other possible facts have to be taken into account:

one is that the components were not welded in the structure but

glued together and hence the elastic properties of the glue play

a role at the joints, the second fact is that there is a stiffening

effect due to the steel coupons, especially on beam (3). It is

interesting to notice that, probably because of the facts mentioned

previously, all computed values of the frequencies are higher than

the measured ones. But, of course, this is also inherent to the

Rayleigh Ritz procedure per se.

A simular analysis is now developed for the modes with symmetric

behavior.

Modes of pitching type:

Wn theoretical Wn experimental Percentage error normalized
(cps)n theoretical n experimental by the experimental data
(cps) (cps) (%)
69 62 11.2

125.6 112 12.2

404.8 361.1 12.1

536.2 480 11.7

643.3 575 11.9

Consideration of the percentage error leads to conclusions similar

to that of the previous case and thus we develop again a non-dimensional

manner of comparing the results, as shown below:
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SW Percentage error normalized
') n ) by the experimental dataW1 theoretical W1 experimental

1 1

1.82 1.79 1.7

5.87 5.78 0.9

7.77 7.68 1.2

9.32 9.20 1.32

Column 3 shows satisfactory agreement between the non-dimensional

frequencies obtained theoretically and experimentally. Furthermore

it is of interest to notice that even for different types of modes

the percentage errors have almost the same value; this suggests that

the analysis performed for the two classes of frequencies applies in

fact globally which is an indication of succesfull agreement between

theory and experiments.

The global analysis is presented below in tabulated form:

n W percentage w n percentage
nn n nerror n n error
theoretal experimental error
(cps) (cps) theoretical experimental

36.7 32.5 11.5 1 1 --

69 62 11.2 1.88 1.86 1.1

125.6 112 12.1 3.42 3.36 1.8

295.5 264.3 11.8 8.05 7.93 1.6

404.8 361.1 12.1 11.03 10.83 1.9

536.2 480 11.7 14.61 14.40 1.4

546.6 489 11.6 14.89 14.67 1.5

643.3 575 11.9 17.53 17.25 1.6

648.2 578.7 12.0 17.66 17.36 1.7
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For all of the nine resonant frequencies there is less than

2% disagreement between theory and measurements when compared in a

non-dimensional manner.

It is important to mention that because of the choice of very

soft springs in supporting the model, the frequency of the rigid

body translation of the structure resting on springs could be very

easily filtered out in the experiment and was not accounted for in

the previous discussion.

Even if this had not been the case, a valid comparison between

the two types of data should still be possible, and for this purpose

the author has developed in Appendix V a theoretical analysis allow-

ing for the effects of the two springs.

6. A modal analysis of the Lockheed model L-100 Hercules

a) Presentation of the model

Following the production of early C-130 military Hercules air-

craft, Lockheed - Georgia had decided to offer a commercial version

of this heavy transport, and the model L-100 is one of the six models

which have been offered for that purpose.

Customers of this aircraft have included Alaska Airlines, Delta

Air Lines, Interior Airways and Pacific Western Airlines.

A picture of the airplane is shown in the upper part of Figure

32 and a general arrangement drawing is shown below.

More detailed information can be found in References (32) and

(33).
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b) Numerical results

The theoretical analysis developed in paragraph 3 has been applied

with the following values of the parameters representing the model.

Parameter Physical significance Value for

L-100

1 point along the fuselage connected with 0
the wing

2 point along the fuselage connected with 1
the wing

p1 ratio (mass wing/mass fuselage) - engines not
taken into account 1

2 ratio (mass wing/mass tail) 38.97

Y1 ratio (wing span/fuselage span) 1.36

Y2 ratio (wing span/tail span) 2.52

V1 mass to inertia ratio between wing and 91.4
fuselage

v2  ratio between mass and inertia of the wing 166.84

*3 mass to inertia ratio between wing and tail 2669.44

1 frequency factor of the fuselage in bending 65.47

2 frequency factor of the fuselage in torsion 81.05

P3 frequency factor of the wing in torsion 245.67

4 frequency factor of the tail in bending 39.98

5 frequency factor of the tail in twisting 1560

The first twelve natural frequencies of the aircraft have been

obtained and their values are listed below. A total of 53 modes

(38 bending modes and 15 twisting modes) has been considered for the

motions of the rolling type; 125 modes in total (50 twisting modes

and 75 bending modes) have been used in the analysis of the modes
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of pitching type in order to compensate for the eventual loss in

accuracy in the matrix manipulations especially when they are

nearly singular.

non-dimensional frequency type of

frequency w Q (cps) modal behavior

4.20 18 pitching

8.30 36 rolling

12.03 53 rolling

16.78 73 rolling

18.75 82 pitching

21.65 95 pitching

23.5 103 pitching

24.3 106 rolling

25.14 110 pitching

40.09 176 rolling

40.6 179 pitching

45.17 199 rolling

52.55 231 rolling

The deformation of the structure in the first mode is shown

in the Figure 33; this mode appears to be mainly a wing mode going

only small rigid body translations. In fact the natural frequency

of this mode is close to the first free-free bending frequency

of the wing alone, more precisely

W1 beam cantilivered < w1 <  l free free beam
in the middle



- 85 -

The figure shows that the wing translates with the fuselage but

mainly bends in the first even mode; the ratio of the corresponding

generalized coordinates (bending to translation) which is an indication

of the relative contribution of the initial modes, is of 1.6 in absolute

value. Structural information obtained from the values of the Lagrange

Multipliers is given below (up to multiplication).

Shear force developed at the point of attachment

between : 1 lb

the wing and the fuselage (taken as reference)

Shear force developed at the point of attachment

between : 0.019 lb

the tail and the fuselage

Torque developed at the point of attachment

between the : 0.24 lb x in

wing and the fuselage

Torque developed at the point of attachment

between the : 0.011 lb'x in

tail and the fuselage

As expected, the shear force developed at the point where fuse-

lage and wing join, is predominant in this mode.

The structural deformation of the aircraft in the second mode

is shown in Figure 34. This mode is characterised by an antisymmetric

behavior of the wing and the tail and only angular deformation of the

fuselage. This angular deformation is composed of rigid twisting,
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with contributions from the second and first elastic torsional modes

by order of importance. For purpose of qualitative information:

1 = 5.2 i =P.9

2 P3

The wing rotates with the fuselage and bends in the first anti-

symmetric mode;

I (l)bending = 1.3

-(1)1 rotation

The tail shows practically no elastic behavior.

The value of the torques per unit length developed at the points

of connection between fuselage and tail and between fuselage and wing

respectively is given by the ratio

= 0.15

3

The next higher mode presents again antisymmetric behavior of the wing

and tail as shows Figure 35, in fact the gross-deformation of the

structure is very similar to that of the previous mode except for the

fact that in this mode the angular twisting of the fuselage has same

direction at the points of connection with the wing and the tail.

Detailed analysis shows that in this mode the behavior of the

fuselage is predominantly elastic, in fact mostly in the first elastic
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mode with some rigid contribution P2 and very little

( - 2.1)

contribution from the 4th elastic mode

P
( 32.1 )

As previously, the wing bends predominantly in the first antisymmetric

mode, but undergoes less rotation than previously and shows also

influences due to the second free-free antisymmetric mode.

(1)bending = 4.92 bending 4.92= 13.6

-(1)I rotation _MSrotation bending 2nd mode

as it can be'seen in the lower part of Figure 35 the tail acts mainly

rigid, however, slight elastic behavior can be graphically detected

(quantitatively, a (2)rotation I = 18.3 )

(2)bending

The ratio of the torques per unit length developed at the wing and

tail is now equal to 0.66 as compared to 0.15 in the previous case.

The modal behavior for the fourth natural frequency is shown in

Figure 36 and similar discussion can be developed for this mode.

For a more complex analysis taking into account the masses and

inertias of the engines (represented by rigid structures attached to

the wing), the author refers the readers to the theoretical develop-

ment of Appendix VI.

The present model does not provide information about the chord-

wise bending occuring in the wing and the tail because of the
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one-dimensional assumptions for these components. A more sophisticated

analysis taking these additional effects into account, is provided in

the Appendix IV where the wing and the tail are represented by plate

elements with uniform properties.
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CHAPTER IV

MODAL BEHAVIOR OF A HIGH ASPECT RATIO AIRPLANE

WITH OBLIQUE WING AND TAIL.

1. Statement of the problem and basic assumptions

The present chapter may be considered as a generalization of

Chapter III. This analysis has not only a pure academic interest

in showing the generality of the method, but also a practical inter-

est. Since the oblique wing configuration was proposed, there has

been an increasing concern over the aeroelastic problems arising

from such an uncommon geometry. As most of the flutter analysis

are based on the structural normal modes, the purpose of the present

chapter is to provide precisely these normal modes and frequencies.

It is of interest to note that the assumption of a high aspect ratio

wing is particularly suitable for such a type of configuration as

it can be seen in Reference(34)and Figure 37; the additional assumptions

under which the problem is treated are similar to those of Chapter III

and are reminded below:

1) the airplane structure is considered to be of beam type

2) the displacements of the beam components are governed by the

Bernoilli-Euler equation

3) the geometrical and elastic characteristics are constant along

the span for each component.

The geometry of the structure is illustrated in the top view

given below:
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The angle a, angle between the oblique components and the fuselage, is

the main new parameter of the problem.

2. Rigid body dynamics in the linearized theory

Notations:

R : Gallilean frame of reference
o

G: Center of gravity of the structure

,0,E: Classical Euler angles as defined in Chapter III

3 (G,S): Inertia tensor of the structure at the center of gravity

and with respect to its own system of axis

S: Total mass of the structure

Q(S/R ): Vector defining the rotations between the frame of the

structure and R
O0

r (G/R : Acceleration vector as defined in Chapter III.
0

((S)/R ):Angular momentum as defined in Chapter III.
0

In absence of exterior forces Newton's law yields:

M . r(G/Ro) = (91)

This relation decouples the translations in the three directions
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from the rotation motion around the center of gravity.

For zero exterior torque the angular momentum equation is simply:

d (92
d--t ( S/Ro) = 0 (92)

which can be also written as:

d (J(G,S) . (S/Ro) )=o (93)dto

Due to the absence of symetry, the tensor 3(G,S) has a non-diagonal

representation and can be written in the following matrix form:

Il(a) Jl() 0

J(G,S) = J1 (a) 12 (a) O

0 0 1

where J1 (w/2) = 0.

Hence the linearized equations of the rigid body motion are:

(I1 (a) cos a - J1(a) sina)0 + (Il(a) sina + Jl(a) cosa) = 0 (94)

(J 1 (a) cosa - 12(a) sina)o + (J 1 (a) sina + 12 (a) cosa) = 0 (95)

= 0 (96)

This set of equations shows that the yawing motion decouples from

roll and pitch, but the later two remain coupled unless a = 7/2

This fact introduces a fundamental difference from the types of

structures investigated in the previous chapter: indeed, if previously

the modal analysis could be done from the onset separately for symmetric
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and antisymmetric modes, this is no longer the case for the present

problem as it can be seen from the rigid body analysis.

3. Elastic modal behavior, derivation of the frequency equation

a) Statement of the elastic problem: degrees of freedom, derivation

of the constraint equations.

The motions investigated are of roll-pitch type; the bending vi-

brations in the y-direction (yaw-type of motion) are not considered

in the present chapter.

Each one of the components is allowed to bend and twist rigidly

and elastically and the corresponding modal displacements are sought

in the following forms:

- for the fuselage: - L < x < L

bending displacement:

W (x,t) = C Qn(t)>n(x) (97)
n=1

twisting angular displacement:

e(x,t) = E P (t) e (x) (98)
n=l

- for the oblique wing: - 1 < x < 11

bending displacement:

W1 (x1 ,t) = q) (t) 4n(Xl) (99)n=l

twisting angular displacement:

1 (x 1 ,t) (l) n (t) en(xl) (100)
n=l
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- for the oblique tail: - 12< x < 1
2 - 1- 2

bending displacement:

w2 (xl't) = E q(2) (t) n (xl) (101)
n=l

twisting angular displacement:

02 (X1,t) 
= E P(2)n (t) . (x) (102)
n2l1n n 1n=l

As explained in the previous chapter, the physical displacement of

each component is rigorously the sum of the bending displacement

and an additional term due to the twisting of that element; however

in agreement with the one-dimensional assumption it is reasonable to

neglect the contribution due to twisting (based on the fact that the

ratio of the chord to the length of the element is considered small).

The constraint conditions insuring the equality of the physical dis-

placements at the points of connection between the components can be

written then

W(&1,t) = Wl(0,t) (103)

W(g2 ,t) = w2 (0,t) (104)

after having suitably non-dimensionalized W, W 1 and W 2 so that their

domain of definition be [-1, 1].

Another set of constraint conditions is derived from enforcing

the equality of the slopes of the components in the x and y directions

and leads to the equations

e( l,t) = 0 1 (0,t) cosa + 1 1 (0.t) sina
S(105)11 1
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1 aw (5, t) = - el(O,t) sina + 1 W (O,t) cosa (106)
L E 11

for the wing and fuselage, and

0(52 , t) = 02 (0,t) cosa + 1 2 (0,t) sina (107)12 2l

1 W. (E 2 ,t) = - 0 2 (0,t) sina + 1 2 (0,t) cosa (108)
L DE 12 1

for the tail and fuselage-

The slope condition of Chapter III can be found by setting

a r/2.

b) Derivation of the frequency equation

The total kinetic energy of the structure is

L 1 1

T = (f W2(x,t) d 2 2 (xlt) dm2 +
1 (x1 t1 2 22 -L -1  2

L .2 1 .2 12 .2
L r  (x,t) dx +_1 10 (xl,t) dx1 +-f 21 (x 1 ,t) dx1) (109)-L 1 2

where I, Ii, 12 are the respective mass moments of inertia per unit

length about the torsional axis of the fuselage, wing and tail. Their

integral expressions are given in the paragraph 3 section b) of the

previous chapter.

Substitution of equations (97) - (102) into equation (109) yields:

2 1)2 (2)2
T = (MQn (t) + M1  (t) + M2  (t) +

2 n=1
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.2 .(1)2 .(2)2

I Pn(t) + 1 Pn  (t) + I2 n  (t) ) (110)

by virtue of the orthonormality of the free-free component modes.

The total potential energy of the structure in bending and torsion

is:

U = 1 (EIL ( (x t)) dx + EI 1 11( 1 (x t)) dx +
-L 1 1 - 1, 1

2 2 1 2

EI f2 3w 2 (x t ) )2dx + GJ_ I ( 9o (x,t))2dx +
2 -1 1 -L

3x

1 11) 2 1 2( 0 2
(GJ)1  1( 1 (x1 ,t) ) dx1 + (GJ)2  1 2 (x ,t)) dxl) (111)1 -1 1 1 2 -1 1 1

1 ax 2 2x1

where I, Il, 12 are the structural moments of inertia about the neutral

axis of the fuselage, wing and tail respectively, E and G are the Young

and shear modulus of elasticity, and (GJ), (GJ)1 and (GJ)2 are the

respectives torsional stiffnesses of each of the components.

Equation (111) can be rewritten by use of (97) - (102) and the

free-free beam equations in bending and torsion in the following way:

4 2(EI) 4 (1)U = 1 E (EIk (t) + 1 k q (t) +
2 n=l L3 13

(EI) 4 (2) 2 2 2
2 kn q 2  (t) + GJ (n-l) 2 P (t) +

13 L 4
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2 2
1 (n-1

) 2  P (t) + 2 (n-l) 2  2 P (2)(t) ) (112)
n n

1 4 12 4

Using again the Rayleigh Ritz expansions given in the equations

(97) - (102) for substitution into the constraint conditions (103) -

(108), the following modal expressions are obtained:

(Qn(t)qn(5l) - qnl) (t)4n(0) ) = 0 (113)
n=l

(2)
E (Qn(t)n( 2) - qn(2 (t) n(0) ) = 0 (114)
n=l

(1)

Z (Pn(t)en(l) - P(1)(t) 6 (0) cos - qn(t)' n(0)sina)= 0 (115)
n=l n n 1 n n 1

1

(1)

( n(t) ) + Pn (t)e (0)sina - n(t)O' (0)cosa) = 0 (116)

Z (P (t) (2 ) - P(2)(t)0 (0)cosc - qn(t)~' (O)sina) = 0 (117)
n n 2 n n n

n=l 1

CO o (t (2) q (2) (t)( n(t) + (t) (O)sin -(2)(t) 'n(O)cosa) = 0 (118)
n=l L 12

These equations weighted by their respective Lagrange multipliers

contribute to the formulation of the Lagrangian for the entire elastic

structure:

d(t) = T(t) - U(t) + Xl(t) x eq.(113) + X2 (t) x eq.(114) +

X,(t) x eq.(115) + X4 (t) x eq.(116) + X5 (t) x eq.(117) +
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5 (t) x eq.(118)

As mentioned in Chapter III the values of the Lagrange multipliers

give interesting structural information: (Xi)i = 1,2 relative to

displacement conditions give a comparative value of the shear force

developed at the points of connection between the fuselage and wing

and the fuselage and tail; (i)i = 3, ...6 give a relative value of

the bending moments about the x and y axis developed at the points

of junction between the components.

Moreover the values of the Lagrange multipliers indicate which

type of behavior is predominant in a particular mode before even having

actually determined the mode shape. This statement is a little of an

anticipation at this point but its proof is clear from equations (125) -

(130).

The equations of motion, known as Lagrange's equations for the

system are:

SM(t) + E k Qn(t) - l(t)n(l) - A2 (t)n(E) -
L3

X4(t)V n(l )  X 6 ( t )  ' n(E ) = 0 (119)
L L

* ILP (t) + GJ (n-1) 2 2 P (t)(t) - X3(t)e n( ) -
L 4

Ag(t) e n(E) =0 (120)
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(EI) 4 (1)
M qn(t) + 1 kn q (t) + Xl(t)n(O) +

1 1

11 411

4 (t)en(O)sina = 0 (122)

.M .. (2) (EI)2 k4  (2)(t) + (t) (0) + (0)

2 n  (t)+(EI)2 kn (t) (ts(t) n12 12

sins + x6 (t) ' (0) cosa = 0 (123)1 22

..(2) (GJ) 2 2 (2) (t)

I 212Pn  (t) + (GJ)2 (n-1)2 2 p (t) + (t) (0)
12 4 1

cosa - X6 (t)en(O)sina = 0 (124)

together with the constraint equations (113) - (118).

The harmonic behavior in the modal analysis is taken in a similar

form to that of the previous Chapter and is reminded here:
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P (t) P

n n

(1) (1)
q t) qn (EI) 1/2

P (1)(t) -- (1) 3 (- 3) wt
n n x e 1 1

n (2t) n (2)

(2) -(2)
(t) pn n

(EI) 1/2
1(t) l i (--- ) wt

P2(t) P2 3

2 (t) (E (E) e1/2

3
S11

S(E) 1 1/2

X4 (t) = ) i ( M 3 t

5 (t) 5 11

A6 (t) 1
6

The following non-dimensional parameters are defined:

M M 1 11
=1.1= 1 1 ; Y1  1 ; Y2 =
M M2 L 12
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M1 ML ML
v = M  ; v = 1 ; v 3 = 1

1 12I 11 1  2

EI GJ (GJ)1

ML3  2 I

1  2 - IL3 -
(EI)1  (EI)1  (EI) 1

M1113 M1ll3 Mil1

(EI) 2  (GJ)2
3 2

SM 212  121 2

(EI)1 (EI) 1

Mi1 3

M1113 M1 113

2 4
F (1) = w2 - kn4
n

(2) 2 2 2F (2) = _ 2 (n-1) nTr

n 2 4

F (3) = 2 -k 4

n n

(4) 2 2 2

F = - 3 (n-i) T

n

(5) 2 4Fn(S = - 4kn
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2 2F ()= 2 -2 5 (n-1) ?r

4

In terms of these parameters and of the non-dimensional Lagrange

multipliers the generalized coordinates are expressed as follows:

= -l ( l 2) + 2n ( 2')+X n 1 6 1 n 2 )2) (125)
(1)

Fn

n Y1l (38n + 5 n(~ )) (126)

(2)
F
n

qn(1) Xl n ( 0)+ 3 n(0)sina+X 4 n (0)cosa (127)

(3)
F
n

V- (1) 3 cosc - A sina ) (128)
n 2 ()n

(4)
F
n

- (2) - 2 ( X
2 n (0)+XSY2 '!n (O)sina+ 6 Y2 'n(0)cosa) (129)

(5)
Fn
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(2) A5cosa - s6sina
Pn 23 osa(0) (130)

(6) n
Fn

It can be noticed that only even modes contribute to the twisting

of the wing and tail as it can be seen from equations (128) and (130).

It is also interesting to point out by the use of two examples

how the modal behavior of the structure can be predicted from the

value of the Lagrange multipliers directly.

- Example 1:

Assume that for a particular mode the values of the Lagrange multi-

pliers are such that

T.
- <<l for any i = 2,...6

Then equations (94) - (99) can be written at zeroth order approximation.

n= - "Xln( 1)

F (1)
n

n

- (1) = X n(O)

F (3)
n

- (1)P =n
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- (2)qn = 0

S(2) 0
n

for any n.

By substituting these equations into equations (97) - (102)

we obtain the expressions of the modal displacements at the lowest

order:

W(1) = - 1lC l ) (131)

n=l F (1)
n

) = E n(O)n( ) (132)

n=l F (3)
n

() = 01) = W2( 2( = 2 0 (133)

The modal displacements being defined up to a multiplicative

constant, division by X1 is justified. Equation (133) shows that

the tail does not move almost at all in this mode, nor is there almost

any twisting in the fuselage or wing. Equation (132) shows that the

wing bends symmetrically about the fuselage; equation (131) gives the

mode shape of the fuselage. Such a mode is in fact a plunging mode,

totally independent on the angle a and could possibly look as illus-
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trated below:

//

L -----7

Of course, the analysis has only the value of an example and no claim

is made as to the possible existence of such a mode.

- Example 2:

For such a hypothetical mode we assume that the values of A3 and

X6 are much larger than the values of the other Lagrange multipliers.

Then equations (125) - (130) give the following zeroth order approxi-

mation:

n = 0 (134)

Pn = -Y 1V 1 3 n() (135)

F (2)
n

-(1) -n 3 n (0) sina (136)

F (3)
n
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(1) v 3 cosa.On(0) (137)

n 2 F (4)
n

n(2) 2 22 ' n(0)cos (138)

F (5)
n

- (2) x6 sinaO (0) (139)
Pn Y2 3

F (6)
n

It is easily seen that in such a mode the fuselage twists only; an even

more refined analysis can be done by comparing 73 and 76 and hence the

generalized coordinates for given values of y 1,Vl, y22' 2 , 3' P2'

It can be noticed that-for a = T such a mode cannot be possibly

encountered.

Indeed, equations (134) - (139) reduce to:

(1) q (2) 0( = Pn =q'n n n

F (2)
n

- (1)
qn = X3 n(O)

F (3)
n
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-(2) 60 n (0) (140)
n 2 3 6

F (6)
n

and equation (140) introduces coupling between rolling and pitching

modes. In fact the values of X3 and X6 are obtained by totaly indi-

pendent analysis.

For the general case, substitution of equations (125) - (130)

into the constraint conditions given in equations (113) - (118)

leads to the set of linear algebraic equations in terms of ( i) i = 1,

... 6 from which the frequency equation will result.

This system of equations can be written in tensori/al form

&. A = 0 (141)

-

with self explanatory notations for X and with the second order

symmetric tensor 1 defined by its matrix representation as follows:

0 2 2(0)A11  nl 1n 1 n(0)) (142)
F (1) F (3)
n n

A12 = E 11 n 1 n 2) (143)
n=l F (1)

n

A 1 A = A23 = A 25=A36 A 45 :0 (144)
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A1 4 = 1 n 1 n1) (145)
n=l F (1)

n

A6 = q n 2)  (146)
n=l F (1)

n

22 + n  2  2 n 0)  (147)

n=l F (1) F (5)
n n

A24 E Il1Y1  n 1 n 2 (148)
n=l F (1)

n

26 n2)' 2) (149)
26 1 1 n 2

n=l F (1)
n

2 2 2 2 2
33 = + 2 (0)cosa + ,2 (0)sina)

33 E (y v n )I v n n (150)
33 ( 2 ) 2

n=l F (2) F (4) F (3)
n n n

(_ 02 (0) + ' (0) sina cosa (151)
34 n=l v n + n

n=1 F (4) F (3)
n n

0 (51) 6n((2)
A35 = v 1 n 1 n2 (152)

n=l F (2)
n
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2 2 2 2 2
A ( 2 'n2 () + 8 (O)sina + 4' (O)cosa

44 ( lyI n Yl'2 n n (153)
n=l F (1) F (4) F (3)

n n n

a46 E 1 n 1 n 2 (154)
n=l F (1)

n

2 2 2 2 2
Oi F (5) sa + 2  )sin (155)

55 E y v1 - n 2 YlY2'3 n 12Y2 n (155)
n=l F (2) F (6) F (5)

n=l F (6) F (5)
n n

2 2 2 2 22 p' ( ) + 0 (O)sina + 2 (O)cos1)66 n 2 2 3 n y2  2 n (157)
n=l F (1) F (6) F (5)

Sn n

It can be pointed out that the elements A.. are in fact mathe-

matically Green's functions or in physical language influence co-

efficients and can be easily understood. For instance A1 2 represents

the bending displacement of the structure at the connection point

between the fuselage and wing due to a unit force applied at the point

connecting fuselage and tail.

It is interesting to note that a Green's function approach to

eigenvalue problems was suggested by Otakar Danek in 1971, how-
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ever no correlations of the work with a variational approach to the

problem is mentioned, nor a practical way of actually solving the

eigenvalue problems given.

The eigenvalue system (141) leads to the frequency equation

Sdet A (w) = 0 (158)

necessary and sufficient condition for existence of solutions X.

Although equation (158) can be reduced to a polynomial equation

in w2 , in order to obtain a reasonably accurate solution for the

first few modes, the degree of the polynome has to be high and hence

it is impractical and time consuming to obtain the roots by iterative

methods. For this reason .it is preferable to solve equation (158) by

a trial and error method, which besides its simplicity has the ad-

vantage of giving information about the slope of the determinant in

the vicinity of the natural frequencies.

c) Remarks on the sensitivity of the natural frequencies with

respect to small changes in a from the symmetric configuration.

The ultimate purpose of the modal analysis for the oblique air-

plane is to determine the functional dependence of the natural fre-

quencies upon a and also the changes in the modal shapes due to

variations in the oblicity angle. It is by now obvious that these

two questions cannot be solved entirely by analytic procedure, in

other words it is impossible to express the natural frequencies

Wn(a) in the form

n (a) = fn(a)
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where n (a) are known functions of a.

However, particular aspects of the problem can be investigated

analytically; for instance it is of interest to determine the order

of magnitude of the change in a given natural frequency when the

structure is given a small oblicity angle from its symmetric con-

figuration.

Based on physical evidence it is consistent to assume that

wn (a) are continuous functions of a ; then, for small values ofn

la -Irl it is possible to approximate wn (a) as follows:
2

wn (a) = w (n/2) + (a - r/2) dan  (159)
da a= r/2

provided that dwn exists and has a finite value.
da a = /2

Using the relation

D Det (A)

dan = = w/2, w=wn (160)
d a =r/2 M )et (A)

W a= 7/2, w=wn

and the expressions of A.. given in equations (142) - (157) it can be
dw

seen that n exists and it is finite except for situations in
da a = i

which 2

D et (A) is zero
S = 7/2, w n
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This type of situation occurs only if wn is a double root of

the frequency equation for the symmetric configuration (for instance

this would be the case if the structure were composed of two identical

beams connected at their middle), generally the natural frequencies

are only simple roots of the frequency equation.

Substitution of equation (160) into equation (159) yields:

9 Det (A)

n (a) = n (7/2) + (a - 7r/2) 9a a= r/2,=wn (161)

D 1)et (A)

w ta= 7/2,wwnn

a DTet(A) can be computed as follows:
a

6
a Det (A)= E Det (A 1 ) (162)

Da 1=1

where A1 is the matrix defined as follows:

(A ) ij = A..i if j 1 for all i

l =A il for all i
a

This results from the fact that the function determinant is

linear with respect to row or column.

By using equation (162) it is found that

SDet (A) is identically zero in w.

a a C = 7T
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As a consequence, if the structure is given only a small

oblicity angle B from the symmetric configuration there is no

change in the natural frequencies at the order 8. (8 =a -7/2)

A more refined analysis can be done by looking at the second

order problem:

n (a) = wn(7/2) + 1 (a - /2)2 d a2 n (163)
2 2

Because 3 Det (A) = 0 for all wn

9a a = f/2

a et (A)
2 2

d 2nl a 2  a = w/2,w=wn

da2 a = Tr/2 0D et(A)
at ca = i/2,c=

and hence d2 n exists under the same conditions as

2
da2 a= r

dw
n

da a= r

By substitution into equation (163) it follows that

a et (A)

n(a) - w n (/2) = 1 (a- 77/2) 2  a a= 2 n
" (164)a . et (A) (

i la = /2,w=nn
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a2Det(A) is computed by using again the linearity property:
2

2 6 6
8Det (A) = E c Det (ki)

2 k=l 1=1

where

k1 (k 1

with the previous notations.

As A il and Ai2 are independent of a for all i. The summation

above extends in fact only to the subscripts 3, 4, 5, 6.

A practical application of the analysis is given in the example

below.

This example assumes a pivoting wing version of the Lockheed

L-100 (for which the structural frequencies and modes have been

investigated in Chapter III) and by use of equation (132) predicts

its first four natural frequencies for an 800 configuration. The

results are tabulated below:

S2Det(A)

aa 2 a = 7/2,w=wn

2 Det(A)

3w a = f/2,=wn  wn90 n80

0.00016 4.20 4.200024

0.00206 8.30 8.29969

0.0058 12.03 12.03087

0.8666 16.78 16.65
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The results show that for a 100 deviation from the symmetric

configuration only the fourth natural frequency changes by a

significant amount; moreover it is seen that the first frequency

remains virtually unchanged while the second frequency is slightly

decreased and the third frequency increased.

4. Numerical analysis: a pivoting - wing version of the Lockheed

model L-100 Hercules

The present section provides a more extensive study.of the

previous example; the modal behavior of such an airplane is in-

vestigated for ranges of pivoting angles going from 900 (case of

the straight wing) up to 300 (reasonable limiting value for practical

purposes). The value of the first four frequencies as functions of

the angle a are plotted in Figure 38; for the straight wing case the

type of modes is indicated (rolling or pitching).

As predicted by the perturbation theory, it is seen that no

significant changes occur up to the fourth natural frequency where

a decreases slightly from the 900 value; moreover, the trend of the

variation is correctly predicted by the perturbation theory.

It is seen that the first natural frequency is insensitive to

values of a; the second natural frequency decreases significantly

only when a varies from 600 to 300; the third frequency can be con-

sidered to increase as early as a = 700, and the fourth frequency is

seen to decrease even more rapidly.

The fact that the first natural frequency remains constant



through changes in a is not in fact surprising; in the analysis developed

in Chapter III it has been pointed out that the corresponding mode is

practically a "wing mode"; all other components show rigid behavior.

The values of the ratios .i/X1 are tabulated below and give more

detailed information about the first mode shape.

a 21 1 T41 5'I1 x6/1

900 -0.02 - -

600 -0.02 0.3 0.2 -0.26 0.26

450 -0.02 -0.03 -0.03 0.02 0.03

300 -0.02 -0.017 -0.03 -0.014 0.03

The results show that for any angle of rotation the non-dimensional

Lagrange multipliers X 2to A are small compared to X1; as a consequence

both the fuselage and the wing will keep a symmetric behavior through

changes in c, practically the behavior of the straight configuration.

These conclusions follow directly from equations (125) and (127). More

specific results can be drawn from the table above for each configuration;

in particular, it can be seen that when a = 600 the value of 2 /X1 is neg-

ligible compared to any XAi/X1i 2; in this case equation (129) shows

that the tail will undergo mainly antisymmetric vibrations and since wl

is less than the first corresponding free free natural frequency of the

tail, its modal behavior will be a rigid rotation.

Same argument applies to justify a rigid behavior of the fuselage.
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As a decreases further, the values of the ratios Xi/ 1 i # 1

become comparable and hence the antisymmetric characteristics alternate

in the tail's mode.

A more complete picture of the first mode is given in Figure 39.

The behavior of the airplane in the second mode can be analysed in

similar fashion, given the values of the ratios xi i i = 2, ....6.

a 2/X1  3 1 /X4 1/X 5 /X 6/ 1

900 - -

600 -3.56 54.60 36.16 -6.32 -3.04

450 -4.0 33.33 39.83 -2.71 -2.11

300 -4.94 22.36 48.92 -1.12 -1.30

A first important remark is that the values of i/X ,i = 3,5,6,

decrease as the wing and tail pivot from the straight configuration;

this shows that the second mode which originates from a mode of the

rolling type becomes progressively coupled with pitching.

It is also interesting to notice that X4 /X, 4 /X2 and 4/A 6 are

large compared to unity for the different values of angle a tabulated;

as a result, the fuselage will mainly undergo antisymmetric vibrations,

in fact rigid rotations in this range of frequencies.

Because X3/X1 and 4/X 1 are large compared to unity, another general

feature of this mode is the antisymmetric behavior of the wing.

Finally, it can be seen that the plunging mode becomes increasingly

important in the tail as it rotates from the straight position to 300
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The evolution of this mode with the pivoting angle is shown in

Figure 40; the displacements have been normalized so that the larger

generalized coordinate for the wing be equal to 1.

Figure 41 shows the physical displacement of the components in

the third mode with same normalization as in Figure 40; this mode is

similar in nature to the second natural mode.

The analysis can be pursued for infinitely many modes, but very

seldom more than the first 10 or so modes are needed in a flutter in-

vestigation; they are very easily provided by the present analysis.

As an example, the first 10 natural frequencies are given for the

straight wing configuration (Chapter III) and for a 450 oblique wing

and tail:

Straight wing oblique wing percentage difference:

n mode type Wn Wn90 - n45

W n90O

4.20 pitching 4.20 0%

8.30 rolling 7.87 5.2%

12.03 rolling 12.5 3.9%

16.78 rolling 15.2 9.0%

18.75 pitching 20.51 8.9%

21.65 pitching 21.83 8.3%

23.5 pitching 23.82 14.0%

24.3 rolling 37.54 52%

25.14 pitching 40.41 61%

40.09 rolling 48.50 21%

40.6 pitching 53.88 26%
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The results show that the higher frequencies are more subject

to change when the wing and tail rotate; moreover the coupling between

a particular bending mode and a torsional mode has the effect of making

the higher of the two frequencies higher and this trend is shown in the

numerical results.

5. Discussion

The validity of the numerical results for such types of problems

is generally subject to the assumptions made in their modeling (in the

mathematical sense) and also very strongly dependent upon the methods

used in handling them.

If the basic assumptions for the problem are suggested by geometric

or elastic considerations, it is relatively easy to make a choice giving

satisfactory results; a more detailed analysis has to be made concerning

the method by which these results are obtained.

For instance, numerical results obtained by a perturbation method

can be subject to doubt if it is noticed a posteriori that the small

parameter was in fact of the order of unity. The present discussion

has the purpose of precisely pointing out the situations in which the

results given by the previous analysis have to be considered very cri-

tically. It has been mentioned that the important parameter in the

problem is the pivoting angle a defined between 0 and 180 degrees. The

case where a = 900 is a limiting case of uncoupled motion, case in which

both the elements of the eigenvalue matrix A34 and A56 vanish because

of the factored term sina cosa. If this result is similarly true for

a = 0 or 180 degrees, care should be taken to avoid drawing conclusions
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from it. Indeed, the latest situations correspond to a structure

made of superimposed beams for which point contraint conditions are

unsuitable. The constraint conditions should either apply along the

line of contact in the one-dimensional theory, or else in this type

of vibrations the beams would perpetually hit each other.

The last remark would be true also when a is close to 0 or 180

degrees; sfich a type of constraint condition (assuming that its formu-

lation made sense) would be non-holonomic and thus the use of the

Lagrange multipliers would be invalid.

It is with this consideration in mind that the previous analysis

has not been pursued for oblicity angles of less than 300; these types

of situations are anyway very difficult to realize in practice.

The aforementioned limitation appears thus to be of theoretical

rather than practical importance; but it is necessary to have it in

mind when the method is used,for a critical analysis of the results.
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CHAPTER V

THE RAYLEIGH RITZ COMPONENT MODES METHOD USING

LAGRANGE MULTIPLIERS APPLIED TO PLATE PROBLEMS.

1. Statement of the problem and basic assumptions

The problem of the lateral bending of plates is considerably more

complex than the one-dimensional problem of the beam theory. While the

eigenvalue problems leading to the natural frequencies and modes of

vibrations of uniform beams with classical boundary conditions can

be solved analytically, this situation is completely different in

the two-dimensional theory of thin plates. Analytical solutions are

known rigourously only in very few cases (eg. the case of circular

plates by use of Bessel functions, or the case of rectangular plates

simply supported along at least two opposite edges).

For the other types of boundary conditions numerical methods

must be considered; for design purposes they should be general enough

so that they still apply when the plate is constrained in a slightly

different way. Unfortunately, most of the methods used so far have

been ad-hoc methods.

The purpose of the present Chapter is to show that the Rayleigh-

Ritz Component Modes Method, through its use of the Lagrange Multi-

pliers, applies to a very large class of problems and gives accurate

results for less effort than the corresponding ad-hoc methods. The

method requiers mainly basic intuition,(usually suggested by the

physics of the problemland is very flexible in its use.
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The bending vibrations which are under consideration correspond

to the classical small-deflexion theory of plates based on the follow-

ing assumptions:

(1) Points which lie on a normal to the mid-plane of the undeflected

plate lie on a normal to the mid-plane of the deflected plate.

This assumption corresponds to the dual assumption in beam theory

that "plane sections remain plane" and "deflections due to shear

may be neglected".

(2) The stresses normal to the mid-plane of the plate, arising from

the applied loading, are negligible in comparison with the stresses

in the plane of the plate.

(3) The slope of the deflected plate in any direction is small so that

its square may be neglected in comparison with unity, and the de-

flections are small in comparison with the thickness of the plate.

(4) The mid plane of the plate is a neutral plane, i.e. any mid plane

stresses arising from its deflection may be ignored.

Based upon these assumptions, the following problemes are considered:

2. Lateral vibrations of cantilivered plates

As mentioned in Chapter I, this problem has references in the

literature and thus the results obtained by the present method can be

checked for accuracy with numerical results already existing.

a) Principle of the Method

The structure under consideration is shown in Figure 42; it con-

sists of a rectangular plate of length L and width 21, clamped along

the edge x = 0.
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Its normal modes are sought in a Rayleigh Ritz expansion in terms

of the modes of a completely free plate,with the clamped condition

at x = 0 reinforced by means of Lagrange multipliers.

Although the normal modes on an unconstrained plate are themselves

given by approximate numerical methods, the foregoing development has

been adopted in view of its generality as being valid for any type of

support conditions.

These modes themselves are found in a Rayleigh Ritz analysis in

the form:

m CO (n)
Sn(x,y) = E E Akm Xk(x)Y (y) (165)

k=l m=l

where X. and Y. are the natural modes of a free-free beam and the
1 1

coefficients Ak (n) are related to the natural frequencies Kn in the

following eigenvalue problem:

K 2 A.n= A.(n) (k + sk + + sE A n)
n 1=1 r=l Ir

(v(il rj + li .jr) + 2(1-v)a ila jr) (166)

where

ki : natural frequency parameter of a free-free beam

s : aspect ratio of the plate

v : Poisson ratio

n.. = X! ' ( ) X j() da

non dimensional length of beam
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aij.. = X'.() X'.( ) d = a.

non dimensional length of beam

The normal modes of the cantilivered plate are thus sought in the

form:

(n)(16(n)W(x,y,t) = E M Qn(t) Akm Xk(x)Ym(y) (167)
n=l k=l m=l

b) Problem of the constraint conditions

According to equation (167), W(x,y,t) must satisfy the following

boundary conditions:

W(x = 0, y,t) = 0 - 1 < y < 1 (168)

aw(x = 0,y,t) = 0 - 1 < y < 1 (169)
ax

The two boundary conditions above are functional equations.

They can be reduced to one single boundary condition by con-

ceptually considering an unconstrained plate of double aspect ratio

in symmetric or antisymmetric vibrations about the y axis, as shown

in the lower part of Figure 42.

In the first case the only condition which has to be enforced is

W(0,y,t) = 0 for - 1 < y < 1 (170)

in the second case the boundary condition to satisfy is

aw (0, y,t) = 0 for - 1 < y < 1 (171)
ax

Because the analysis of Chapter I I I shows that a more rapid convergence
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is obtained when using symmetric free-free beam modes, the first

possibility has been chosen. Then the summation in k in equation

(167) extends only over the even beam modes.

The additional term in the modified variational integral is:

1
I X(y) W (O,y,t) dy - 0 (172)

-1

Direct manipulation of this integral is very cumbersome in the

Lagrangian method and therefore the integral has to be approximated.

Three basic alternatives are considered in the present analysis; the

theoretical development is pursued for each one of them and the results

compared

* First alternative

The following approximation is taken for the left hand side of

equation (172):

1 R
I (y) W(O,y,t) dy = lim E X(y)W(O,y,t)6(y-yr) (173)

-1 R + r=l

where

-1 = Y1 < Y2<  < YR-1 = 1

* Second alternative

It is a step function approximation of the integral:
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1 R-1

f (y)W(0,y,t)dy = lim E A(yr)W(O,yr,t)(Yr+l - r) C174)
-1 R + m r=l

where the definition of the yr is the same as in the Dirac approxi-

mation.

* Third alternative

This alternative consists in computing the integral by a trapezoidal

rule:

1 R-1
f X(y)W(O,y,t) dy = lim I (X(yr)W(O,yr ,t)+X(yr+l)W(O, Yr+l,t))(Yr+l-r) (175)
-1 R - r=l

with same definition of the yr

In each one of the casesthe following notation is adopted:

A(Yr) = r

c) Theoretical development; frequency equation

The kinetic energy of the unconstrained plate which mass density

per unit area is p , is given by:

1 1

T = 1 p L 1 i i W2 (,n,t) dE dn (176)
2 -1 -1

Since

,,t) =(t)
n=l
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and by virtue of the orthonormality of the plate modes it follows:

T =1p L 1 2(t) (177)
2 n=l

If D is the bending stiffness of this plate of thickness h

(D = Eh3  ), the potential energy can be written as:

12(1-v 2)

1 1 (2 2
U = 1 D I + 2(1-v)((82 2 2 2W) dxdy (178)

2 -1 -1 axay x2  ay2

Substitution of equation (167) into the previous expression yields:

co CO C =(n) (p)U = 1 D1 E Z (t) (t) (E E Akm Ak

2 L3 n=l p=l k=l m=1,3

4 4 4 2 (n) (p)
(k+ sk ) + s E E E E Am Alr

k=l m=1,3 1=1 r=1,3

(v(Wkl arm+Wlkwmr)+2(1-v) akl amr)) (179)

in which s = L/l.

By use of equation (166) and the orthonormality of the plate modes

it follows that

2 2
U =1 D1 E Qn (t) K (180)

2 3 n=l 1
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* in the first alternative

The modal expression of the constraint equation is:

R
lim E E Xr %(t)@n(O,nr) = 0
R - r=l n=l r

so that the Lagrangian of the elastic structure is:

*2 2 2
Fd 1 pL1 2(t) + 1 D1 Kn ) +
n=l 2 2 L3

E Xr Qn(t)Dn(O'lnr)) (181)
r=l

The subsequent Lagrange's equations are thus:

* pL1Q(t) + D1 KQn(t) - Ar n(O,n ) = 0 n = 1,
L3  r=l

E c Q (t) n (O,n ) = 0 r = 1,
n=l

With the assumed harmonic time dependence of the following form:

i 1 D D1/2 Wt

Qn (t) = e L p

i1 1/2
2 tl t

Xr(t) = X D1 e
rrL3
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The generalized coordinates are solved in terms of the Lagrange

multipliers from the first set of equations:

r (o,nr)
Qn= - r=l (182)

22
w- K

n

and their substitution into the second set of equations givesthe

eigenvalue equation:

l  " (W( ) - . = 0

where

A(1)= n (Or) n(Onv) (183)
n=l

2
2-K

n

r = 1,,...C ; v= 1,...0

In the numerical analysis both the eigenvalue matrix and its series

elements will be given a finite form, i.e:

n = 1,2--- N N finite

r,v = 1,2--- R R finite

The frequency equation is

det ((1)(w) ) = 0 (184)
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and its solutions are the natural frequencies of the cantilivered plate

initially considered

* in the second alternative

The constraint equation can be written in modal form as:

R-1
lim E Ixr Qn (t)n(O',nr) (nr+l -nr) (185)
R- r=l n=l r

and the new expressions of the Lagrange's equations are:

* LlQn(t) + D1 Kn2 Qn(t) - 1Xrn (O,nr)(nr+-nr) = 0 (186)

L 3 r=l

n = ,

* E Qn(t) n ( O ',n r ) (n r+l- nr) = 0187)
n=l

r = , 

Same harmonic time dependency is assumed in this case, and

1 1/2i -- (D) wt
LX (t) = X D e

rL

The generalized coordinates are given as functions of the Lagrange

multipliers by:

-- r n0,nr r+ - nr)
Qn= - r= C(188)

2
n
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and the elements of the eigenvalue matrix are in the finite form:

A(2) = n( 0,r n(0, v (nr+l -r) v+l v) (189)

n=l 2 2
w2 -K

n

r,v = 1, --- R-1

It can be further noticed that A(2 ) can be written in fact as:
rv

A =2) (n (1)rv r+l - r) (v+l v- n)rv

and hence

R-1
det (A(2)()) = 7 (nr+ - nr ) x det ( (1)(M)) (190)

r=l

This last equation shows that the difference between the two alternatives

is that for the same finite number of plate modes and same accuracy

expected in the frequency, it is necessary to take one less point

in the subdivision of the y axis. The practical meaning is that the

order of the matrixes handled in the numerical computations decreases

by one in the second case. Although this fact is an improvement, it

is quite negligible compared to the improvement brought by the procedure

described in part a) which reduces by half the order of the eigenvalue

matrix.
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* in the third alternative

The constraint equation can be written in the double serie form

as:

R-l
lim E E Qn(t)1(n rl-n ) (A (0, )+l +Xrn (0,n )) (191)
R+oo+ r=l n=l 1

2

and the subsequent Lagrange's equations are:

2 0
* pL1 Qn(t) + D KQn(t) - 1 E Tlr+ - nI)

3  r=l

(r+l ~(On ) - A (O,n )) (192)

n = 1,.. ,

* with R - m

E Qn(t) Dn(,nl) (n 2 - n1) = 0 (193)
n=l

S Qn(t) n(O,nr) (nr+l-nr-1) = 0 r = 2,...R-1 (194)
n=l

SQn(t) on(0,nR) (nR - R-1 ) = 0 (.195)
n=l

gith same non-dimensionalization as previously,
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R-1
E (n r+l-n r) ) n(O (0,n r+l + X r n
rl= - + + r r n(,r 196)

2
w -K

n

and the eigenvalue matrix A(3) of order R is defined by its elements:

(3) 2 22 )2
11 n (On) (2 - 1

n=1 2

j- K
n

(3) N

Ar3)l = n (0,n ln(0,nr 2 - n1)(nr+I - nr-l
n=l

w -K

N(3)

n=l

w -K
n

(3) N
Ar3)v = . 4n (On) n(0n ) (nr+l- r-1 )(n v+l v-1

n= 1
2

n

r,v = 2, .. R-1
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N
(3) Z n(0r (0 R, n R)R R- l .r + l  r-1

n=l

w -K
n

r = 2, ... R-1

(3) 0 2 2
ARR n (0R) R R-

n=1

n

The eigenvalue determinant can be written after factorisation:

R-1 R-1
(3) R-1 2 R- 2 (1)

det ( ( 3 )  ( nr+1 - nr 2  (nr+i-nr- 1 2 det((1) (M)) (197)
r=l r.=2

and hence this approach is seen to be completely equivalent to the

first approach considered. This fact is somewhat surprising because

generally the trapezoidal rule provides better approximations of

integrals than does the Dirac functions method.

It can be noticed that in the process, the present method gives

also the natural frequencies of point-clamped plates; the number

of points and their location along the edge is completely arbitrary.

Furthermore, for each natural frequency the distribution of the

shear forces and/or bending moment is given along the constrained

edge at the points of constraint.
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d) Natural frequencies of a square cantilivered plate

The first three natural frequencies of a square cantilivered

plate are computed by the present method using the normal modes and

frequencies of an unconstrained plate of aspect ratio 2. The

analysis of Chapter III shows that five symmetric modes in the x

direction insure good convergence (they correspond to less than

0.1% error in the beam case); the number of free-free beam modes in

the y direction is chosen as a function of the number of points at

which the constraints are applied along the y axis and as a function

of the number of natural frequencies sought. For the present analysis

five free-free modes have been taken in the y direction. The changes

in the first three natural frequencies with the number of constraint

points are shown in Figure 43,both for an approximation by Dirac functions

and by characteristic functions. As mentioned earlier, the second

alternative gives faster convergence and the results will be dis-

cussed for this approach. The asymptotic values corresponding to the

square cantilivered plate have been taken from Reference (35).

The lower part of Figure 43 shows that as the number of constraint

points increases, the first natural frequency increases monotonically

towards that of the cantilivered nlate. The results are further

analyzed in Figure 44 where the percentage difference with the canti-

livered case is plotted versus the number of constraint points.

It can be seen that with as little as three constraint points

(one in the middle and two at each extremity) the plate can be con-

sidered clamped at the edge x = 0 in the first mode, with an error of
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only 1%. This result is to be expected because wl cantilivered

= 3.494 is very close to the first natural frequency of a cantilivered

beam l .= 3.516 and because in this mode the plate undergoes only

translation in the y direction in a "beam-fibers" type of behavior.

The second natural frequency is seen to converge as well towards

that of a cantilivered plate when the number of constraint points

increase, as shows the middle portion of Figure 43. In this case the

variation is not monotonic per se, and this fact will be commented

upon later.

The percentage error from the case of the cantilivered plate

is plotted in Figure 45; it can be seen that with the characteristic

function approach a square plate clamped at the points n1 = -1,

n2 = -0.5 , n3 = 0 can be considered as completely clamped along the

edge in the second mode, with an error of only 0.7% in the natural

frequency. It is interesting to notice that as far as convergence

is concerned, there is no improvement in constraining the plate at

n1 = -1, n2 = 0 upon having only the point n1 = -1 clamped. This

result comes from the fact that the modal behavior of a cantilivered

plate in the second mode in the y direction is a combination of

plunging and rotation. By imposing zero displacement at n1 = -1

we constrain Yo and Y1, as for the point n1 = 0 it is a redeen-

dant point for this particular type of constraint because Y 1 (0) = 0.

The method is seen to converge remarkably fast also in the

third mode as shows the upper part of Figure 43; this result is

even more remarkable considering that only 5 modes are used along
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the y axis for as many as 3 points of constraint for instance. For

this mode also,the percentage error with the member of constraint

points is plotted in Figure 46 and the corresponding mode shape of a

squared cantilivered plate is given for reference.

Higher natural frequencies could be obtained provided that more

modes are considered in the y- direction in the analysis giving the

normal modes and frequencies for the unconstrained plate.

For cantilivered plates with higher aspect ratio, same conclusions

are expected to be valid with an even smaller number of constraint

points. Also, the method is expected to converge even faster for

edge conditions physically closer to the free condition (as simply

supported, for instance).

3. Vibrations of a rectangular plate with an internal support

As mentioned in Chapter I, an analytic solution is proposed to

the problem of symmetric-symmetric vibrations in Reference (36)

for the following configuration:

Y0

L

The mixed boundary value problem is formulated in terms of dual

series equations; they are first partially solved by means of the

Bessel function J1 and then cast into the form of Abel's integral enuation
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for which the solution is given explicitely.

Although the method is mathematically interesting, it only

applies to the particular foregoing problem and would fail to give

results if the line of support were to be displaced in the plate.

a) Principle of the method.

As in the previous paragraph, the mode shapes of the structure

are sought in terms of mode shapes of a less constrained plate. The

physics of the problem suggest these initial modes to be the modes of

a simply supported plate along all four edges; mathematically, they

offer the advantage of being known by their analytic expression.

Hence the modal solutions are sought in the following serie form:

W(x,y,t) = 2 Z E Qmn(t) sin mrx sin njry (198)
m=l m=l L 1

0 < x < L ; 0 < y < 1

For motions symmetric about x = L/2, y = 1/2, the summations in m

and n extend to the odd subscripts only.

The boundary conditions at the edges of the plate are already

satisfied by the initial choice of the spectral expansion; the only

additional constraint to satisfy is that along the internal line of

support, i.e.:

W(x, 1 , t) = 0 for -C < x < c
2
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when only doubly symmetric modes are sought, this condition further

simplifies to:

W(x, 1 , t) = 0 for L - c < x < L
2 2 2

The above equation requires the function f(x,t) = W(x,l,t) restricted
2

to L - c1 < x < L to be identically zero in this interval.
2 2
Assuming the function to be continuous in x in the interval of

definition, if we choose a dense set (x )r= : L - c= x < x <rr=1,R - 1 1 2.....
2

< xR = L it is sufficient to require f(xR,t) = 0 r = 1,....R
2

In the limit, equation (199) is equivalent to the set of equations:

W(x , 1, t) = 0 r = 1,R (200)
2

when R + .

The eigenvalue frequency equation will be derived based on this

form of the constraint conditon.

b) Lagrangian formulation of the problem; frequency equation.

The total kinetic energy of the structure is:

1 1
T = 1 pLlo W2 (,n,t) d dn (201)

where p is the mass density per unit area of the plate.

By use of equation (198) it follows:
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* 2
T = 1 pL1 E O (t) (202)

2 m=1,3 n=1,3

Likewise, D being the bending stiffness of the plate and s its aspect

ratio,

1 1
U=1D I I ( 1 ( 2w )2 + L ( 2 W2 + 2v 92 2W

2 3 2 3 2 2 2
L a 1 9n 1L a n

2(1-v) ( 2W) 2 ) dE dn

1L 9jn

or, after substitution of equation (198)

S2 22 22U = D1 E E Qn(t) ( (m~) +s (nr) 2
2 3 m=1,3 n=1,3

In equivalent form,

U = 1 D1 E E Qt) Kmn C203)
2 3 m=1,3 n=1,3

where

2 2 2
K = (mr) + s 2 (n)mn

By substitution of (198) into equations (200), the set of constraint

conditions is obtained in modal form as follows:
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0 -l (n-1)/2
E E (-1) Qmn Ct) sin m7r = 0 r=1,R C204)
m=1,3 n=1,3

where r =
L

If Ar is taken as notation for X( r), the Lagrangian of the system

can be written as

=O 00 2 2 2
E ( 1 pL1 Qin(t) -1 D1 K Q (t) +
m=1,3 n=1,3 2 2 L3

R
(n-1)/2

(-1) Qmn(t) Ar sin mrE )
r=l r r

and the subsequent equations of motion are:

pLl Qmn(t) + D K mn2 Qmn(t) - E (l)(n-)/r simmr = 0
L3 r=l

n = 1, ... (205)

S(-)(n-)/2Q n(t) sin mr = 0 r=l,..R (206)
m=1,3 n=1,3

In a harmonic time dependent motion of the form:

1 1/2

Qmn(t) = mn e L P
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i 1 1/2

L pA(t)= -~ DL pr r - e

the respective amplitudes of the generalized coordinates are given in

function of the Lagrange Multipliers.by:

R (n-1)/2
E (-1) X sin mfrf

Qmn =-r=l (207)
22

w- -K
mn

and the eigenvalue equations are:

A X= 0 (208)

where

OD 00
A rv() = sin mfrr sim mE v Z 1 (209)

m=1,3 n=1,3 22
- K

min

The natural frequencies of the structure are solutions of the equation

det ( A (A) ) = 0

c) Numerical results.

The analysis of Reference (36) treats the case of a simply

supported square plate and gives the variation of the fundamental
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natural frequency with the length of the internal support. For

purpose of comparison, the method is applied in the same case. Six

symmetric modes are considered in the y direction and five more

symmetric modes than constraint points in the x direction.

The results are summarized in the table which follows:

2c1 Ref(36) Present Method Percentage # constr.
L disagreement points used

0 2.665 2.668 0.9% = 0,5

0.1 2.898 2.966 2.6% 5 : (0.45,0.5)

0.2 3.164 3.160 0.13% 5 : (0.4,0.5)

0.3 3.353 3.360 0.21% : (0.35,0.5)

0.4 3.451 3.456 0.15% 5 : (0.3,0.4,0.5)

0.5 3.492 3.480 0.36% 5 : (0.25,0.325,0.5)

0.6 3.507 3.509 0.06% E :(0.2,0.3,0.4,0.5)

1.0 3.512 3.514 0.06% 5 :(0.1,0.2,0.3,0.4,0.5)

2c1 = 0.1
It can be seen that except for the value , there is less

than 1% disagreement between the fundamental frequencies obtained by

the two methods. Moreover, as shows the fifth column, the number of

points approximating the line of support is never greater than 5 and

hence the corresponding sizes of matrices are being kept small.

The functional dependence of the fundamental frequency upon the

length of the line of support is plotted in Figure 47 and indeed the

results are in good agreement considering the scale used.
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d) Conclusion.

The numerical results tabulated in column four make any comment

on the convergence of the method unnecessary.

It has to be pointed out that such a good convergence is due par-

tially to the particular choice of the initial modes which verify the

boundary conditions at the edge and which are known in analytic form

and hence do not have an intrinsec error.

The problem can be solved alternatively by using unconstrained

plate modes, but this choise has for effect in increasing the number

of constraint conditions required. More precisely, the analysis of

Reference (44) shows that for the first six natural frequencies a simply

supported square plate can be approximated to a good degree of accu-

racy by a point supported plate with four points of support along each

edge, and thus the last alternative would include 12 additional ponc-

tual constraint equations.

If the line of support were to be moved in the plate, there the

method would still apply with the following modifications.

(1) the sumation in m and n in equation (198) should be extended

to both even and odd subscripts

(2) the points of constraint should lie along the entire line of

support and no longer be restrained only to its half.

The first modification does not bring any significant increase

in the computation time because it corresponds to operations of adding;

the second modification would increase the size of the eigenvalue

matrices by a factor of two (as their initial size was already small,

such a modification does not represent any real inconvenience).
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CHAPTER VI

CONCLUSIONS AND RECOMMENDED FUTURE WORK.

1. Conclusions

The Rayleigh-Ritz Component Modes method using Lagrange Multipliers

has been shown to predict with good accuracy the modal behavior of

linear elastic structures of various degrees of complexity; it has been

seen that the analysis offers computational advantages through its

convenient matrix formulation and clear physical interpretation.

Good convergence has been obtained in several cases where other

analytical results were available. Moreover, for structures with non-

uniform properties, because the convergence is based upon several

independent parameters, there is more than one procedure for obtaining

good accuracy in the solutions. The discussion presented in Chapter II

suggests a systematic procedure economical from the point of view of

computation time.

The method may be used either as a Rayleigh-Ritz type method or a

Finite-Element type method. In the Rayleigh-Ritz option one employs a fixed

number of components and systematically increases the number of modes per

component; conversely in the Finite-Element option one fixes the number of

modes per component and systematically increases the number of components

(or elements). Thus, potentically, it is more flexible in its use and has

.better convergence characteristics than either of the conventional methods.

The main factors upon which the success in the application of

the method depends are the following:

1) an adequate mathematical model of the components of the structure
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(within the framework of linear elasticity and small deflection

theory),

2) an accurate knowledge of the natural modes and frequencies of

vibration of the unconstrained components,

3) a suitable formulation of the constraint conditions describing the

connections between components and, of course, a suitable choice of

the degrees of freedom for each component.

As a consequence of 1), the present theory has the limitations in-

herent in linear models. The second point mentioned above is particularly

critical when one or several components of the overall structure are

modeled by shells, for instance, because of the difficulty of ob-

taining a good modal representation for them. This fact will be commented

upon later.

Finally, as is pointed out in Chapter IV, care has to be taken in

checking that the constraint equations can be expressed in holonomic

form so that the use of the Lagrange Multipliers is valid. The problem

of two structuresstriking each other during vibration for instance, can-

not be treatea by the presen minethod. For the problems for which the

use of the Lagrange Multipliers is justified, the present method is

convenient also for computing the internal forces developed at the

points of constraint. The analysis of Appendix VII shows that the

values of the Lagrange Multipliers are much closer to the actual values

of the shear forces and bending moments at those points, than the

values directly given by differentiation of the modal shape.
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2. Recommended future work

The modal behavior of arbitrarily constrained plates with non-

uniform properties can be investigated by extending the analysis

developed in Chapters II and V; it is expected that the more sensitive

parameter for the convergence of such problems is the number of substruc-

tures (or uniform plate elements) considered, rather than the num-

ber of unconstrained plate modes used for each component. (The latter

depends upon the number of constraint points taken along each edge of

the plate elements and their respective bending stiffnesses).

Vibrations of structures with shell components can be also treated by

the present method; however, the problem is then of greater complexity.

First of all, it is very complicated to formulate and find solutions

of the characteristic free vibration equations; while the form of the

classical fourth order equations of motion for plates is universally

approved, there are numerous shell theories which have been derived

for a given shell configuration. Hence, first the theory adopted for

obtaining the unconstrained frequencies and mode shapes should be chosen

by checking the different assumptions which give rise to that theory.

Additional complexity enters into the problem because of the question

of the boundary conditions. The classical bending theory of plates

requires only two conditions to be specified along an edge, while a

corresponding shell theory requires four specified conditions. How-

ever, there are already available results, primarily for circular cylin-

drical shells, as can be seen in Reference (47).

Another problem which is of interest in structural dynamics is that

of the determination of the modal damping of a given complex structure.
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The analysis presented in Appendix II takes into consideration only the

structural damping per se. However, sometimes the damning occurring in

structural joints is the major contributor to the total damping of the

structure, and hence an open area for further research is that of mo-

deling the joint damping so that it can be incorporated as a constraint

condition in the present method. In Reference (48), some experimental

attempts are Dresented for modeling the various types of joint damping

occurring in the orbiting Skylab cluster.

In Chapter IV, an analysis for determining the structural modes

of an airplane with oblique configuration is developed; the results

can be directly used for a flutter or gust response analysis. As

a first step, a simple aerodynamic theory could be considered (such as

piston theory, or aerodynamic strip theory for instance); then the

problem can be pursued with more comnlex aerodynamic operators.
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APPENDIX I

MODAL BEHAVIOR OF NON UNIFORM CONTINUOUS BEAMS

BY A PERTURBATION - GALERKIN METHOD.

1. Introduction

The purpose of this Appendix is to present an alternative method

to the Rayleigh Ritz component modes method presented in Chapter II,

for continuous beams with variable stiffness along the span.

The method previously presented applies with great simplicity

to the treatment of stepped or almost - stepped beams, where the number

of components is determined by the number of "steps" of the beam. This

number is then finite and the convergence problem identifies with the

convergence of the Rayleigh-Ritz method. Because of the simplicity

and efficiency of the analysis, hardly any other alternative method

could be considered for such problems.

For this reason, only the case of beams with continuously

varying properties has been investigated by an alternative method.

2. Theoretical development

The variations in the bending stiffness of an elastic beam can

be caused by the change in the elastic properties of the material

(in particular the Young modulus) and/or variations in the geometry

along the span. If changes in E occur, we shall assume them con-

tinuous and smooth; as for changes in the geometry, only slowly vary-

ing properties along the span are meaningfull within the one-dimen-

sional theory of continuous beams. The previous considerations

suggest a "perturbation - type" approach.
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Unlike the method presented in Chapter II, this method does not

adopt a variational point of view and the starting point is the differ-

ential equation and the associated boundary conditions.

a) Notations

EI(x) : bending stiffness at station x

El : mean value of EI(x)
O

p : mass density

A(x) : cross sectional area at station x

A : mean value of A(x)

y(x,t) : transverse displacement of the bent beam

w(x) : normal mode shape of the bent beam

6 : Kroenecker's symbol
np

b) Development of the problem

The differential equation governing the transversal vibration of

a non-uniform beam is:

a 2 2
2 (EI(x) a y (x,t)) + pA(x) a y (x,t) = 0 0 < x < L (210)

ax ax2  at2

and can be written in non-dimensional form as follows:

2 2 2
1 a2 (EI( ) a2 (C,t)) + pA() 2y (5,t) = 0 (211)

L4 2  2  at2

The normal modes are found by a solution of the form:

iQt
y(,t) = w(E) e
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which when substituted into equation (211) leads to:

1 d2 21 d2  (EI() j2W() ) pACE)Q2 W() = 0 C212)
L4  d 2  dE

We introduce the following definitions:

f(S) = EI( ) - EI
o 213)

(EI(E) - EIo)max

and

g(E) = A() - A
o (_214)

(A(C) - Ao )max

The above defined functions satisfy

f (E) < and I g() 1< I ES[-1, 1]

and the quantity

E = larger of (I EI(E) - El max A() - Ama ) (215)

El A
o o

is small compared to unity.

Using (213), (214), (215), EI(E) and A(S) can be written:

EI(E) = EI ( 1 + N(c) f () ) (216)

A (E) = A (1 + M(C) g(M) ) (217)



with obvious definitions of N(E) and M(E) from (215).

By substituting (216) and (217) into (212) this equation becomes:

Elo d4W() 2EI df()
S( 1 + N(s)f() ) d_ + o N(E)

L 4 4dE4  L dE

d 3 W( ) EI d2 f() 2
+ o N() 2 - pA (1+M(e)g( )) 02W( ) 0 (218)

d3 4 dE o
d L

So far no specific boundary conditions have been assigned, in fact the

method will be developed for any arbitrary type of boundary conditions,

noted B.C.

Solutions are sought in the form:

Wn () = n ( ) + E E.(E) .in() (219)
i=l

n = + F(E) in (220)

with

lim Ei+ (E) = lim Fi+1 ( = 0

E.( ) F.iE)

Substitution into (218) yields the perturbation equation:

EI4 4Elo d4 (r) 4
4 (1+N(s)f() ) n(  n + El() n1 +
L 4 4
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E2( ) dn2( + ) + 2Eo N( ) df()

dE4  L dE

d3n () d l(3) d n2()
3  + E1(E) 3 + E2 (c) 3 +

El d2f() d2 n() d2nl (E)
0 N(s) 2 + E1 ) 2

E2(c )  n2 +...) - pA (+M()g() )
dE2

2 2 2
(wn + 2F (E)w nnl + F 12(C) + 2F (E) 2 ")n 1 nn1 1 n1 2 nn2

(4n () + El E)D(nl() + E2 (E) n2( ) + ... ) = 0 (221)

From the boundary conditions B.C. we determine boundary conditions for

the functions .ni ().

For example, in the case of a cantilivered beam clamped at the end

S= 0 the boundary conditions are:

W(0) = dW (0) = 0
d

EI(1) d2W (1) = d (EI(E) d2W (5) ) (1) = 0

dE2 dE dE
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from which we determine the boundary conditions on n . (C) using
nl

(219)

Sni(0) = ni (0) = 0 (222)

dE

d2.ni (1) d3n. (1) = 0 (223)

dE2  dC3

The problem is now wel. defined at each order and solved as follows:

* Zeroth order solution

It is as expected, n (E) satisfying the zeroth order problem.:

Elo d4 () - pAo n( ) = 0 (224)

L4  dC4

B.C.

* First order solution (solution at order E1(s))

For almost all the cases of interest the slow variations in EI

(C) and A (C) have comparable lowest order terms, which can be written

using Landau's notation:

N(E) = 0 (M(E) )

(i.e. lim (N(c)/ M(E) ) is finite)

Solutions are sought such that:

E1 ( e ) = O(NI() ) : F1(E) = 0(M(e) ) (225)
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and hence the first order problem is:

El d4 2 () d2  d2
EIo on n -PA n 2 (f() n )
4  d 4  dE d2L dE dE

+ pAo (2n n nC ) + g()w 2 p n(() ) (226)

B.C.

(p)
We denote by sn4 the elements of the spectral decomposition of

@n ' i.e.:

( p )
nn () = ni Qp() (227)

p=l

sn() o 1 n (P ) p(E) dE (228)

and we apply a Galerkin procedure to equation (226).

It follows, using B.C. that:

2 2 (p) EI I d d 2 ( )pA (2 - ) s = - (f() n ) (E)dCo p n n i o 2  2
2 4 012

+ Ao(2n ni 6np + 2n 0 n g())p)d()

for n = p, Qni is determined by:

1 1
n =  

I  o f(g)q''n2(E)d - o g(E)#n2(()ds ] (229)

2 k 4



where k is non-dimensional frequency parameter of the reference beam.
n

and for n / p the s are determined by:ni

2 1
(P) =n 2( 1 ' f(E)" (f)" (E) dE +

2 2 4 n

p n n

1
oI g() n )p (E)d ) (230)

1
From the normalization condition I W 2()dE = 1 it follows

o

(n)
nl

The solutions at the next order are determined by a similar

type of procedure.

3. Beams with linear bending stiffness and mass distribution along the span.

/

4- /- -,
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A beam of such type is illustrated above. The width. distribution along

the span is given by b(E) = b (1 + Ec) where E = o(1)

The analysis of the previous paragraph applies with

f(S) = g() = (231)

p(E) = M(E) = E (232)

and solutions are formed with

1
E.(E) = F.i() = E (233)

for various types of boundary conditions.

It can be noted that relations (231) and (232) hold not only for

the particular type of beams shown in the figure, but are more general

(there are multiple ways in which EI(x) and the mass distribution /unit

length, m(x) can be made to vary linearly along the span). In fact

formula (231) and (232) could have been taken as starting points.

Free-free beams.

The first order corrections to the natural frequencies 0nl

are found to be zero; the corresponding corrections to the mode shapes

are:

cnl() = 16a a k 5 k 4 () (234)
p=p n p pp=l 4 4
p different k - k
parity than p n
n

where the values of the a are given in Reference (21).
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On the basis of this result it can be concluded that the natural

frequencies of such beams can be considered within a reasonable degree

of accuracy as being the same as the natural frequencies of the

uniform beams of reference, the degree of accuracy being determined

in its major part by the value of Qn2 (the next higher term in the

serie (220). It is also significant to notice from formula (234)

that the corrections in the mode shapes at the first order are the

corrections due to the fact that there is no longer symmetry about the

middle of the beam, and thus although the boundary conditions are

symmetrical, the modes are no longer even or odd functions.

Finally, the Qn2 are determined by solving the second order

problem and found to be:

004 4
mn ( nkn (6 - 1 a k ) + E (k - k ) x

n2 2 2 n n k=l
k parity
than n

(k) (p)
nil n (235)

with the notations of paragraph 2.

Clamped - free beams.

The natural frequencies of such cantilivered beams are given at

the first order by:

S= W ( 1 - 2E an (236)

k
n

and the associated modes:



Wn(S) = ( ) - C 8c a .k n+p 2  2
n= np n p ( (-1 k 2 k ) CS)

pfn k - kp n

Equation (236) shows that at first order wn bounds On from above if

c>o and from below if e>o and that for a given e the first order

correction decreases in absolute value with n, the order of the natural

frequency sought.

Clamped - clamped beams

This type of boundary conditions leads to similar conclusions

about the natural modes and frequencies as in the free-free case; such

a result is expected because the free-free and the clamped-clamped

modes in the constant case are related by:

(n() ) = ( d2n (  )
free-free d 2  clamped-clamped

Beams simply supported at both ends.

The previous conclusions apply again and the natural frequencies

up to the second order are found to be:

1+2 1 + E 16 p 2
n  n  (2n)2 p=l 5 4 2 2 (wp - 1 )

(2nr) #parity n (n -p ) 2
pfparity w2
than n

The serie in the right hand side of the equation is convergent, its

3
general term being of the order of l/p

The modes shapes are determined at first order by:
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Wn() = sinT. - En 4p 3  sinprE

7 p1 2 2 22
T p#parity (n +p )(n2-p2)

than n

The other possible types of boundary conditions present no

difficulty and the modal characteristics can be found from paragraph

2 in similar fashion.

It is to be noted that for the foregoing class of beams, the

natural frequencies are closer to the natural frequencies of the

beams of reference when symmetrical boundary conditions apply that for

the other types of boundary conditions.

4. Tapered truncated cantiliver beams with elliptical cross section.

This class of beams is a reasonable approximation of high

aspect ratio airplane wings and therefore it is of interest to

investigate the modal behavior of such structures by the method

developed in paragraph 2. The type of configuration considered is

the following:

//



h() = h - e b() = b - aeE
o O

o<e<<l o < < 1

The corresponding mathematical model is given by the differential

equation (212) and the boundary conditions B.C. are:

y(o) =dy (0) 0 (237)

EI(1) y (1) = d (EI() y () ) = 0 (238)

dg2 d dg2 E = 1

The cross sectional area and structural moment of inertia are:

A(E) = r b(S) h(E) (239)

I(5) = 7 b(S) h(S) (240)

64

and consequently, the method of paragrpah 2 applies for the particular

functions:

A() - A =- b e ( 1 +ah - ae
oo o

0 0

2 ah
EI(E) - El = ET eE[ h b ( 3 - o ) +

64 b
o

ah 3eh 3ah 44
3eh b (1+ o) - e 3 b (+ 3ah+ae 44

b b
O O
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The first order solutions for the natural frequencies are

found to be

e 2a ah (241)
n =  ( 1+ -- (- 1 - 2n ( 4 + o )) ) (241)
n n + no 2 2 bk o

The first order correction in the right hand side increases linearly

with aho the taper ratio between the chord and the thickness; more-

b
over thi? correction is always negative for the natural frequencies Q

p

for which k > 2 / 4 + taper ratio.

This formula is significant for design purposes because it indi-

cates in which manner to adjust the taper ratio such as to increase

the value of a resonant frequency which is within an undesirable range.

This formula shows that the effect of the taper is to increase

the fundamental resonant frequency regardless of the taper ratio, but

the value of the second natural frequency can be increased by choosing

configurations for which a > 1.5 bo.
h
o

The first order solutions for the normal modes are found to be:

a a~ k
W () = (E) + 8e E np pho p=1 kn2( 1k 4 k 2  n+p

pfn n p- 1 -
k k
n n

2 - n+p b
(k - (-1) ) o

n
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It can be easily checked (by looking at the order of magnitude

of the general term) that the serie on the right hand side of the

above equation is convergent.

S. Conclusion and discussion on the limitatikons of the method.

Like every pertubation method, this analysis is based in large

part on the assumption that E is a small Quantity. The term "small"

however has no intrinsec meaning; for perturbation problems E is

considered small if the specific perturbation method gives consistent

results. Hence the important problem when dealing with such methods

is to know what error in the results is associated with a given e

If this error is acceptable for the specific engineering purpose for

which the problem is solved, then e can be assumed small; if on the

contrary, a sufficiently large number of terms in the perturbation serie

does not give a satisfactory result, then the value of c does not

justify the validity of that perturbation method.

As an illustration of the above, the method is applied to tapered

cantiliver beams for which the theoretical results are given in the

paragraph 3 of this Appendix. The accuracy in the first three

natural frequency is based on the comparison with analytical results

of Reference (22).

One-term perturbation solutions are compared to the exact solu-

tions for different values of e , and the percentage errors are

plotted versus E for each of the three frequencies in Figures 48,

49, 50.

Figure 48 shows that the one-term solution for the fundamental
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frequency is really accurate only for E small compared to unity.

For E = 0.5 the percentage error in the frequency is 6.03% and in-

creases relatively fast to 9.21% for E = 0.6.

If a more accurate solution is needed for the fundamental

frequency of cantilivered beams which such taper, then it is

necessary to proceed to a second order analysis, or to higher order

if needed.

However, as it can be seen in Figures 49 and 50 when the second

and third natural frequencies are sought, even a one-term solution is

highly satisfactory by this method.

For values of e as high as 0.7 there is only 5% error for the

second natural frequency and only 2% error for the third natural

frequency.

This perturbation analysis does not present loss in accuracy

for higher modes and therefore seems particularly suitable when the

determination of the higher harmonics is desired.
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APPENDIX II

ANALYSIS OF MODAL DAMPING BY COMPONENT MODES METHOD

USING LAGRANGE MULTIPLIERS

1. Introduction

In a rencent note Hallquist and Synder (Reference (42)) formally

analysed a linear, damped.vibrating system with arbitrary support con-

ditions using Lagrange multipliers. This method is dependent upon

determining the coefficients C.. of the Rayleigh dissipation function

for damping. Most commonly, in fact, what can be determined experiment-

ally are the damping coefficients relative to the classical undamped

normal modes of a structure. In their recent paper (Reference (43))

Kana and Huzar developed an empirical method for predicting the modal

damping of a Space Shuttle model by means of damping measurements

performed on the individual substructures. As an alternative, presented

here is a theoretical analysis which extends that of References (3)

and (4) to the determination of the modal behavior of a damped linear

elastic structure of arbitrary complexity by a component mode method.

2. Theoretical Development

We conceptually disassemble the structure into N simple components

for which we know for each mode:

a) the generalized masses M.(n) j 1,2,.... ; n = 1, ....N

b) the damping coefficients (n) j 1,2, n = 1, ....N

c) the natural undamped frequency (n ) j=,2,... ; n = 1, ....N

For the total system:
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Kinetic energy:

N
N 21 C C (n) (n)T = =l j= Mj qJ (243)

2 n=l j=1 j

Potential energy:

1 (n) (n) (n)
-U = l. (). qj (244)

n=l j=l

Damping dissipation function:

N 2
D = 2(n) (n) M.(n) (n) (245)

2 n=l j=l

Here we assume that the damped and undamped modes of components (though

not necessarily of overall structure) are indistinguishable.

Interconnecting conditions between the components:

CO (n) (n)S= 6 rj qj = 0 r=1,....R (246)
r n=l j=1

Lagrangian:

R
L=T+D-U+ E f

n=l r r

where T, D and fr are given respectively by equations (243), (244),

(245) and (246).
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Lagrange's equations are thus

R

M (n) qJ (n)+ 2j (n)W (n) (n) (n)2 (n) (n) 0 (247)
jJ JJ J 1 r= rrj

Assume time dependent motion of the form,

qJ (n) (t) = qj (n) e(-BQ + in l1-p2)t

X (t)= X e(- B + i -2,)t
r r

The Eigenvalue equation is then obtained from (246) and (247), as

S. 0

where

N (n) (n)
A = E pj pj

Pq n=l j=l (n) (n) (n)2
M.j { [n2(282_l)+2c e. (")(n) s+m"(n)2 ] +

n(n--2-- (n) (n)_ }2

2iQ '1 2 (* - 0) } (248)
j J

For the case where the damping coefficients of the components

are small for each mode, a first order approximation of equation (248)

leads to
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N (n) (n) (n)2 2 2 (n) (n)E E $ .B . - -2i( (n (n ) ] (249)
Pq n=l j=l q

(n) (n) 2)2

Thus to first order, for small damping, the natural frequencies,

Q, are the same as for the undamped system.

3. Example:

The utility of the method is now illustrated by a simple example

which is that of a structure composed of two identical beams connected

at their middle. In particular, for doubly symmetric vibrations, the

single constraint condition reduces to the equality of the displacements

at the mid-point. The natural frequencies and damping coefficients in

each mode are given by (from equation (248) for N = 1)

0 2 2 2E 2 (0) (w. -Q ) 0 (250)
j=0,2,4

(W 2 2 2

22 

2

¢j2(0) 2( .w.-GB) = 0 (251)
j=0,2,4 3 3

(W 2 2)

where ij represents an unconstrained beam mode.

The solutions 0.j = mj ; 6j = tj corresponding to X = 0 are phy-

sically valid and represent modes in which the beams vibrate symmetrically
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together, without any constraint force required.

Other solutions for A 0 are given by:

S(0) 0 (252)
j=0,2,4

2 2

2

~p. (0) Q ( - 6 ) = 0 (253)
j=0,2,4

(w 2 _ 2 )

One can show that there is one root of the frequency equation (252)

in between each two consecutive unconstrained natural frequencies w..

A two-term analysis for the fundamental bending mode gives:

R = 0.758 m2

B = 0.758 2

In this mode, the overall structure is more flexible than its

individual components and contains less damping.

4. Discussion and Conclusions:

For any arbitrary structure the natural frequencies and modal

damping can be predicted from the knowledge of the natural frequencies

and damping coefficients of each of the components. All parameters

appearing in the analysis can be measured experimentally and the

technique is simple and offers physical clarity. Further study needs

to be given to the damping which may arise at the connection of the

components per se.
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APPENDIX III

FREE VIBRATIONS OF A BEAM CLAMPED IN ITS MIDDLE BY A

RAYLEIGH RITZ METHOD USING LAGRANGE MUJLTIPLIERS.

1. Introduction ; statement of the problem.

The present analysis is mainly intended as background for the studies

of the limiting cases considered in Chapters III and IV. The problem

considered is that of a beam of length 2L, free at both ends and clamped

in the middle, as illustrated below:

1-

M: half mass of the beam

EI: bending stiffness

i(): unconstrained beam modes - 1< <

k.: corresponding non-dimensional frequency parameters.
1

W(E,t):bending displacement of the beam

The kinetic and potential energies of the beam are:

1 .2
T= 1 W (,t) dE (253)-2
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U 1 El W"2 (,t) d (254).
-1

2 3
L

2. Modal analysis using even modes of an unconstrained beam.

The modal displacements are sought on the form:

W(E,t) = E an(t) n )  (255)
n=1,3

and thus (253) and (254.) become

'2 4 2
T = 1 ME q (t) U = 1 E E kn %(t) (256)

Sn=l1,3 2 3L n=1,3 I

by virtue of the orthonormality of the i (). Because of the choice

of even beam modes, the only condition for the beam to be clamped in

the middle is:

W(O,t) = 0

or, by use of (255)

q q(t) n(0) = 0 (257)
n=1,3

The corresponding Lagrangian is:

*2 4 2O= e (M q (t) - El kn4 qn2 (t) + qn(t) n(O) )

n=1,3 2 2L3

and the subsequent Lagrange's equations are:
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. 4
,M q (t) + ElI kn q (t) - Xn (0) = 0 n=l,...

L3

E qn (t) n (0) = 0
n=1,3

Harmonic solutions are sought in the form:

"2
i ( EI )wt

qn(t) = q n e ML3

/2
i ( El

ML
X(t) = X EI

L

and thus:

q = - A (0) (258)

2 4
w k

n

-2

n=1,3 n 0) = 0 (259)
2 4

w- k
n

Equation (259) leads to the frequency equation:
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n=,n (0) = 0 (260)
n=1,3

2  4-2 k 4

and equations (258) determine the generalized coordinates for each

natural frequency. The mode shapes are then given by equation (255).

3. Modal analysis using antisymmetric modes of an unconstrained beam.

Only odd free-free beam modes are used in the modal serie:

W(C,t) = % qn(t) n S) - 1 ( ~ 1 (261)
n=2,4

and equations (253) and (254) become:

S2
T = 1 M qn (t) (262)

2 n=2,4

01 4  2
U = 1 EI 2 kn qn (t) (263)

2 3 n=2,4

The zero-displacement condition at the middle of the beam is

already satisfied by the coice of the antisymmetric modes in the

analysis; however the beam has to be constrained so that:

1 W'(o,t) = 0
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or using (261)

1 n (t) 4' (0) = 0 (264)
L n=2,4

If v is the Lagrange Multiplier corresponding to the above con-

straint, the equations of motion are:

4* Mq (t) + EI k q (t) - ' (0) = 0 n=1,....

L3  L

E qn(t) ''n(0 ) =0
n=2,4

L

Harmonic time dependent input is assumed as follows:

i ( El 1/2 t

ML3

qn(t) = qn e

i (EI ) 1/2 Wt

ML
(t) = i EI e

and hence the Lagrange's equations are equivalent to the system:

- vi _ ' (0)q n -2n (265)
2 4

n

2
C' n (0) 0 (266)

P 2 4
n=2,4 w k

n
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From the eigenvalue equation (266) we obtain the frequency

equation:

0 'n2(0) = 0 C267)

n=2,4 2 k 4
n

and equations (265) and (261) determine the corresponding modal

displacements.

4. Discussion

Although a more elaborate analysis is presented in Chapter III,

a two-modes approximation of the frequency equation can give some

insight on the rate of convergence of the fundamental frequency

according to the type of modes used.

A two-terms expansion of equation (260) gives:

1 +32 (0) =

2 2 4
2w w -k

and yields the following solution for the fundamental frequency:

w = 3.553

with the values of 3 (0) and k3 given in Reference (35).

Hence, a two-symmetric-modes analysis is seen to produce an error of

about 1% in the fundamental natural frequency.

If two antisymmetric modes are used in equation (267), the fun-

damental natural frequency is given by
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-1/2
S= k4 ( 1 + 2 4 2 (0)

3

and with the values of k4 and '4 (0) given in Reference (35),

yields the numerical value:

w = 4.709

In the analysis using antisymmetric modes, a two-modes approximation

gives a 5.4% error in the fundamental frequency and thus we can

anticipate better convergence using symmetric modes.
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APPENDIX IV

MODAL ANALYSIS OF A FLEXIBLE AIRPLANE WITH LOW ASPECT RATIO WING AND TAIL

1. Introduction

The present analysis extends the study of Chapter III to the

more general case of a flexible airplane with a wing and tail of

finite or low aspect ratios.

Such a configuration is illustrated below.

In this analysis the fuselage has a one-dimensional beam repre-

sentation with freedom in bending and torsion, while the wing and

tail are represented by uniform plates undergoing bending in the x

and y- directions.

Each one of the components is given a linear treatment, geo-

metrically and elastically.
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The rigid body dynamics of this structure are similar in concept

to those investigated in Chapter III.

Because of the geometrical symmetry, pitching and rolling motions

can be considered independently of each other. Yaw-type of motions are

not in the purpose of this analysis.

2. Modal analysis for motions of the rolling type.

Such motions are characterized by pure twisting of the fuselage,

and antisymmetric behavior of the wing and tail about the x axis.

The approach is based upon the use of free-free twisting modes

for the fuselage and unconstrained plate modes with antisymmetry

about the x axis, for the wing and tail. More specifically, the

latter modes are of the form:

n (x,y) = E2 Akm k(x)Y (y) (268)
k=l m=2,4

where

Xk and Ym are free-free beam modes,and the "weighting" coefficients

(n)
Akm are found together with the natural frequencies Kn by solving

the eigenvalue problem:

(n) 4 s 4 4) + 2 o (n)
Akm (kk + s km )+ s E E AIr E('klrm+ilkmr) +

1=1 r=2,4

2 (n)2 (1-v)aklamr]= K Akm (269)

In the above equation:

ki: natural frequency parameter of free-free beam.



- 178 -

s : ratio length/width plate

v Poisson ratio of plate
1

w.. = X"''.() X.(S)dE
13 1 J

1

= I X'.(E)Xj ()d = a..
ij 1 j 31

The angular displacement of the fuselage O(x,t) is sought given

by the following serie:

e(x,t) = E P (t) 6 (x) - L < x < L (270)
n=l

n (x): free-free modes in twisting

and the bending displacements of the wing and tail W1 (x,y,t) and W2

(x,y,t) are sought in the forms:

W1 (x,y,t) = qn(l)(t) (1) (x,y) - L1 
< x < L1  (271)

n=1

- 11 < y < 11

C (2) (2)W2 (x,y.t) = qn ( 2 (t) C 2 (x,y) - L < x < L2  (272)
n=l

- 12 < y < 12

If the wing and tail have different ratios length/width, then:

(1) (2)D (n)(x,y) A O (x,y)n n

The total kinetic energy of the structure is:
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1 1xy2x d
2 -L -L -1

1 1

L 1
SW22 (x,y,t) dm2 ] (273)

-L -1
2 2

where I is the mass moment of inertia per unit length of. the fuselage

about the x-axis. By sybstitution of (270), (271), (272) and use of

the orthonormality of the component modes, equation (273) becomes:

Th o2 + (1) (2)

T= E IL n(t) M1  (t) + M2  (t) (274)
2 n=1

In the above equation M1  and M2  are one fourth of the masses of the

wing and the tail respectively, i.e. relative to half-length and half-

width of these components.

The potential energy of the airplane is:

L 2 2 L. 1 2 2 2
U = 1 { I GJ(2e (x,t)) dx + E if i 9W i2 )

2 -L 8x i=l -L. -l. 2 2
1 i ax ay

2 2 2 2
2(1-v.) [ (2w ) - i. dxdy (275)

98xy ax y2

In a first step equations (270), (271), (272) are substituted into

(275), then use is made of the classical beam equation in twisting, and

of equation (269) applied respectively to the wing modes and the tail
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modes.

After lengthy algebraic manipulations, the potential energy is cast into

the form:

2 (i)2 (i) 2
U =1 ( GJ (n-1) P n (t) + Z D.L. K qn (t) (276)-- i i n

2 n=1 L 4 i=1-7
1.

1

Finally, the continuity of the displacements and slopes between the com-

ponents has to be enforced. The slopes in the x direction and the

displacements are already zero because of the choice of antisymmetric

modes only, in the y-direction for the plates; as for the slope con-

ditions in the y direction they are:

e(x,t) = 1 (x,O,t) - L < x < L
1- 1

ay

O(x,t) = 2 (x,O,t) - 2 < x < L2

y

The variational formulation of these conditions is:

-L 1 X (x,t) [O(x,t) - 1aw (x,O,t) ] dx (277)
I 

9
-L

X 2 (x,t) e(x,t) - 2 (x,0,t) 1 dx (278)

2 .9y
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where j1l) and X(2) are the corresponding Lagrange multipliers. In

the present case A(1)(x,t) and X(2)(x,t) are the generalized bending

moments per unit length, developed along the widths of the wing and

tail respectively and necessary to keep the continuity of slopes.

The integrals (277) and (278) are considered in a Dirac

approximation; the alternative procedures discussed in Chapter V are

prooved to be equally suitable but give rise to more elaborate com-

putations.

For this purpose, the following notations are introduced:

(x )  R partition of the interval [-II , 1 1]

x (1) (1) (1)r5, = x(1r ; C1) = x1)
r r

L L1

(x ( 2 ) r) r=1,R : partition of [-I2, 12]

E,, = x(2) r ; (2) = (2)r

L L2

X(l) (t), (2) (t): discrete values of X(l) and (i2) at the corre-
r r

sponding points.

Then, the integrals (277) and (278) are approximated by:

R r() r -9 (2r 1 [  ( ' t ) -1 1l (r ( ) , O , t ) ] [279)
r=l 1 T

1 aln
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S (2) [ (I",t) - 1 W2 ((20,t) (280)
r r r '

r=l 11

which can be written in modal form by use of (270), (271), (272) as

follows:

R (1) (1)
R X(1)r (pn(t) 9n(' )  qn (  t )  n (1 (1 r 0)) = 0 (281)

r=l n=l 11

r n n r

r=l n=l 1 an
2

The subsequent Lagrange's equations are thus:

2(2 ) ( 2)
ILP (t) + GJ (n-1) 7 P (t) - E (X ) ) =0

n - n r n r r n r
4 r=l

L

2 R (i) n(i )

" D.L (i) (i)  R (i)
M.q (t) + 1 K (t) + r ( 0) = 0i = 1,2

3 r=l 1.
1. 1 a1
1

together with the continuity conditions (281) and (282)

The following harnomic behavior is assumed in the analysis:

P (t) P i 1 (D p 1/2 Wt
n n 1 1

1

(qn i) (t))i=1,2  
(q (i)e

n i=1,2
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L 1

i 1 (DP1l)1/2 t

(i )(t)) (i) x D11 xe
r (t))i=1,2 r 2

11

where p1 is the mass density of the wing per unit area.

The following non-dimensional parameters are defined:

1 1 M 1 M 1¥I= 1 ; 2 = -1 ; l = 11 ; 2 = 11 2 1 2
L 2 M2

GJ D2

IL2  2 2

D IDD1  1

4 2 4

111 111

(1) 2 2 2F = 2 - (n-l) 91n 1

(2) 2 (1)2F = m - Kn n

F (3) 2 K (2)2
n n 2

Then the generalized coordinates are expressed in function of A (1)
r

and (2) from the equations of motion as follows:r
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R (1) (2)
E r (B ( ) + X e8 3')

r n r r n r (283)
n 1 

F (1)
n

(i) (i)R (i)
(i) E x a n r

n = r= r (284)

i=1,2

F (i+1)
n

Substitution of the above equations into the constraint conditions lead

to the eigenvalue equation and then to the frequency equation

det (A () )= 0 (285)

with the following representation of the eigenvalue tensor:

1 < r<R ; 1 <v<R

A (W) = (Y 1  6n ( ' n ( ' ) +
rv 1_1_n rn_ _

F (1)
n

(1) (1)

n (1) n (2 )

(r '0) (r , 0) )

F 2)
n



< r <R ; R+ 1 <v< 2 R

Ar(w) = c Yll en(c' ) n ( v )rv n 1 1 n r n v
n=l

F (1)
n

. R+ <r<2R ; R + 1 < v <2R

(2) (2)
,,1 n (2) n (2)

Ar(0) = ( nr ) nv 2 22 n r 0) an (2) 0)
n=l F (1) F (2)

n n

3. Modal analysis for motions of the pitching type

Such motions are characterized by pure bending of the fuselage and

symmetric behavior of the wing and tail about the x axis. The procedure

is similar to that of paragraph 2, except for the facts that free-free

beam modes in bending are used for the fuselage, and that the uncon-

strained plate modes are now based on even A (y).

Hence, equations (1) and (2) are still valid formally, but the sub-

scripts m and r are 1,3,5,.....

The bending displacements of the three components are sought

given by the series:

W(x,t) = E q (t) n (X) - L < x < L (286)
n=l
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W. (x,y,t)(i) (i)W (x,y,t) = n (t) n (x,y) - L. < x < L

n= (287)

- 1. < y< 1.
1-- 1

i = 1,2

and thus the kinetic and potential energies of the structure are:

22 2
T = 1 E (Mq (t) + M. q (i)(t) (288)

2 n=1 i=l1

4 2 2 2 2
4 2 (i) (i)U=l ( EI k n qn (t) + E l i Kn qn (t)) (289)

2 n=l 3 i=l 3L 1

where - is half of the fuselage mass, and EI its bending stiffness.

The above equations are derived in a procedure similar to that

of the paragraph 2 and therefore the details of the computations are

omitted.

Because symmetric behavior of the wing and tail has been assumed

in equation (1), the continuity of slopes in the y-directions between

components is automatically satisfied; the continuity of the dis-

placements and slope in the x-direction at the connections between

components is expressed by:

W (x,t) = Wi(x,0,t) (290)
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( (x,t) =Wi [x,o,t) (291)

3x Dx

for - L. < x < L. and i = 1,2

By following a similar procedure to that of paragraph 2, the

following expressions are obtained for equations (29)) and (291) in the

variational form:

E (qn n () - q (t) (E ) ,0)) = 0 (292)
r=l n=l

R (2) q n () n (1) 0 ) )  0 (293)
r n n nr 1 ( t )  n

r=l n=l
L L1

r x(3) ( t)n ) - 2) (2)r(2)) ) = 0 (294)n-A r (t) n(E q n (t) D (Er ) 0 (294)r=l 1 n=l 1

S (4) qn(t) , qn(2) (t) 3n (2) ( (2),0)) = 0 (295)
r n r

r=l n=l
L L2  32

Also, the harmonic analysis in the Lagrange's equations assumes similar

harmonic time dependence.

The following non-dimensional parameters are defined here:



- 188 -

L L M M
= L1 2 L l 1 2 1

L L2  M M2

EI D2
El D2

ML Y212
1 2 2
D1  D1

Ylll Yl1l
1  11

(1)n 2 n 4
Fn(1)=- k 

(2) 2 (1) 2
n n

(3) = 2 K (2) 2
n n 2

The equations of motion are first solved for the generalized coor-

dinates:

R (1) (2) (3) (4)

E r n )+6 1 r n r r n(Cr')+61 r n rr r=n
q n = r=l

F (1)
n

R (2) (1)
R 1) (1) 1 ((1) -- an (1)S (1) ( ,o)+ n ( ,o )-r (1) r n r. r .

F (2)
n
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C23
R (3) ( C2) 2) + (4) n C (2)0)

E 1 (K ,0) Cr ,0)
- (2)= r . n ..r. . r. .
q ='2 rn1 

F (3)
n

and then the eigenvalue equations are found by substitution into

(292) - (295). The eigenvalue matrix is of order 4Rx4R, symmetric,

and its elements are:

1 < r < R ; 1 < v < R

(1) (1) (1) (1)

n=

n n

S1<r<R ; R+ 1 <v<2R

an ( Wn0(1) (1) (1)
rv () -161 n r)n(v) +  r n

n=1 r

F (1) F (2)
n n

l< r < R ; 2R+1 < v < 3R

rv 1 E'
n=1

F (1)
n

. < r < R ; 3R+1 < v < 4R
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A (W) = l I n r) n
n=1

F (1)
n

R+1 < r < 2R ; R+1 < v < 2R

(1) (1) (2)

2 (( ,0) n rArv (w) = Z (Ij1 2 (1fr)tn( v) DE
n=l

F (1) F (2)
n n

R+1 < r < 2R ; 2R+1 < v < 3R

A (w) = W6 n r ) 'n v
rv 11n=l

F (1)
n

R+1 < r < 2R ; 3R+1 < v < 4R

12
rv) 1 n ' r n ( v)

n=l

F (1)
n

2R+1 < r < 3R ; 2R+1 < v < 3R

Ar(w) = C (pl1n( 'rn (') + 2 n(2) ( r (2), (2) (2)0))
n=l

F (1) F (3)
n n
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2R+1 < r < 3R ; 3R+1 < v < 4R

C2) C2) O (2) (2)n .Cr n ,C2
.A rv) (16'n( rn(v )+ 26 2 a

n=l

F (1) F (3)
n n

3R+1 < r < 4R ; 3R+1 < v < 4R

= 2 2 (2) (2)B(2) 2)
002 2 n n v

rv 1 n r(1nC + 262 0)
n=l

F (1)F (3)
n n

Non-trivial solutions for the Lagrange multipliers exist if:

det ( () ) = 0

i.e., for the natural frequencies of the structure.

4. Discussion of the convergence of the method.

The main sources of error for the natural frequencies are the use

of a finite number of modes per component and the choice of a finite

number of points at which the constraints are applied.

An obvious way of solving the problem would be to give to both

parameters very large values form the beginning, but then the computation

may be too time consuming for the accuracy desired. A better approach

is to aim at optimizing the values of the two parameters based on pre-
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vious information acquired in the dissertation.

As a first remark, it can be noticed that the bending or torsional

free-free modes of the fuselage are analytically known functions and

are used only in elementary operations such as summation. Therefore,

a large number of these modes can be used without any loss in accuracy

or significant time increase.

The problem is much more comnlicated, however, for the plate modes.

The unconstrained modes are obtained by numerical techniques applied

to equation (?69), and therefore neither the Akm(n) nor the K (2) are

rigourously known. As a consequence, it is desireable to avoid using a

larger number of modes than is strictly necessary, in order to minimize

the initi'al errors propagating to the final result.

The minimum, number of modes necessary is, of course, determined

by the number of nat~iral frequencies desired and by the number of con-

straint points considered. For instance, if five constraint points are

considered along the width of the wing and the first three natural fre-

quencies are desired, at least ten degrees of freedom in the x-direction

should be used in the analysis, for a reasonably good accuracy. Obviously,

a suitable number of modes in the y-direction has to be considered as

well.

The purpose of this discussion is to suggest a systematic approach

for the optimum choice of plate modes versus points of constraint, for

the wing and the tail. The procedure is based upon convergence in a

limiting case, i.e. the case in which the fuselage behaves rigidly and

therefore the constraints at the connections are most critical.
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The analysis of the Chapter V shows that by using five modes

Xk(X) and five symmetric modes Yk(y), an unconstrained plate with

aspect ratio 2 can be considered clamped in the middle of the first

three natural frequencies with as little as seven constraint points.

The fundamental natural frequency is then predicted with less than

0.1% error, similar precision is obtained in the second natural fre-

quency, and an error of only 0.4% is obtained in the third natural

frequency. If the plate has higher aspect ratio, an even smaller num-

ber of points should suffice for comparable accuracy. Therefore,

setting R=7 in the analysis of the pitching modes should be very satis-

factory for at least the first three natural frequencies. The order

of the eigenvalue matrix would then be 28, which is not unreasonable

for computations of such type.

The analysis of Chapter III indicates that for motions of the

rolling type,a number of twenty antisymmetric modes should be used

in the y-direction in order to obtain same accuracy in the natural

frequencies. This disadvantage is compensated by the fact that in this

analysis the eigenvalue matrix would be of order 14 only and hence the

total computation time should not be higher. Finally, it is also suit-

able to check the unconstrained plate modes for orthonormality at the

beginning of the numerical analysis in order to avoid possible errors

comming from an incorrect numerical assumption.
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APPENDIX V

EFFECT OF THE ELASTIC SUPPORTS ON THE NATURAL FREQUENCIES

OF THE EXPERIMENTAL MODEL CONSIDERED IN CHAPTER III

1. Introduction

As discussed in Chapter III, the effect of the supporting springs

on the resonant frequencies of the rolling type can be completely

eliminated by a perfect allignment of these supports along beam (1).

In the present study this is supposed to be the case and only the

corrections to the frequencies of the pitching type are considered.

The springs are supposed to be massless and perfectly elastic.

The analysis is developed by a Component Modes Method using La-

grange Multipliers. The notations of Chapter III are used in the

present analysis; some new notations are introduced below:

kl, k2  : elastic constants of the two springs (the experiment was per-

formed with kl=k 2 but generally this might not be the case).

Z1 (t), Z2 (t): longitudinal rigid body translations due to the elongations

of the springs.

2. Theoretical development

For the total system in which the supports are included, the

kinetic and potential energies are:

2 M 2
T 1 (z Mn ( t ) + E E Miq n (t) +

2 n=l n=1,3 i=l

2 2
Ii 1i P (t) ) (296)

n=l i=l
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2 2
004 2 4 (i)U=1 El k 4 (t) + E (E)i k 4  ( (t) +

2 L3  n=l,3 i=lL 31.
1

2 2
00 2 (GJ) 1)2 2 (i) 2 2 2
n=l (t) i=l (t) ) (297)

.n=1 i=1 1 4 i=1

The new continuity conditions are:

E Qn(t)n(i) E q n (t)n(0) =0 i=1,2 (298)
n=l n=1,3

S (Qn(t)'n(Ei) + Pn(i(t) 0n(0) ) 0 i=1,2 (299)
n=1

L

n=l

( Qn(t)cn(l) ) - Z2 (t) = 0 (301)
n=l

Equations (298) and (299) are found in the analysis

developed in Chapter III, equations (300) and (301) express the con-

tinuity of the displacements between the beam (1) and the supports

placed at the tips.

The Lagrange's equations of the system.are:
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t) 4
M Qn(t) + El kn Qn ( t) ion( - 3 0'n(Sl )

L3  L

- 4 'n(~2 ) - 5 'n(- 1 ) -6 n(1) = 0 (302)

L

S (i) (t) + (EI)i k 4  (i)(t)+ x. (0) = 0 (303)
Si n + n(0) 0 (303)

1.
1

for i = 1,2 and n=1,3,5,...

(i) (GJ) 2 2 (i)I ili Pn (t) + i (n-1) 7 P n (t) - 2+ i n (0) = 0 (304)

1.

for i = 1,2

k.Z.(t) + X4+i = 0 (305

for i = 1,2

equations (298) - (301)

The physical interpretations of the Lagrange Multipliers AX' x2'

A3, A4  has been given in Chapter III; A5 and X6 are the internal

forces developed at the tips of beam (1) when connected to its supports

(this physical interpretation is particularly obvious from equations

(305)).

The equations (302) - (305) are solved for the generalized coordi-

nates, when harmonic time dependent motion is assumed as in Chapter III.

In particular:
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Qn =-/41(Yn(Cl + X2n 2 31)+ .X Y n (E1)+X 4yl 1'l n CE2

F (1)
n

x5cn (-1)+x 6 n (1))

F (1)n

(1) 1 (0) n=1,3,...

F (2)
n

Pn(1) = - len(O)

F (3)
n

S(2) = 22 On(0) n=1,3,...

F (4)
n

(2) _ y2 v2 X4 n(0))

n F (s)
n

Z = + X51 5 with 4 = M

klm

Z 6 with = M1
2 66 6 4

k
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The resulting tensonial eigenvalue equation is

A (W) . X = 0 (305)

where

S : ( X' 2 .........' 6 )

and A(w) is a sixth order symmetric tensor with the following matrix

representation:

All 1 n (51 )  + 2 )
n=l n =1,3

(1) Fn
n

12 = 1n 1 n 2
12 1

n=l F (1)
n

a1 3 = ~ Y n 1 n 1
n=l F (1)

n

A14 E 1 n 1 n 2a14 = 1¥1
n=l F (1)

n

Sn 1 n ( - 1 )
15 1

n=l F (1)
n

A1 6  E 0 i 1 n(1)n (1)

n=l F (1)
n
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A22  1 n 2 2) +  P2 (0)
n=1 n=l

F (1) F (4)
n n

A23 1 l l n (l) n(2n=1 F (1)
n

A24 = PYI b'n( 2)n(2 )

A 24 E 1 n 2n n 2
n=l

F (1)
n

A25 1 n(-1)n(2
n=l

F (1)
n

26
n=l 1 _n (l)n(2)

F (1)
n

2 2 6 (0)A = i Y1 1 1 n )
n=1 (3)F (1) F (3)

n

2 ?2 ,(l),n (2)

n=l nF 1(1)

n

35 E 11 n(-1) 'n
n=1 F (1)

n

A36 = n(1)4'n 1
n=1 F (1)

n
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m 2 ,2 (0)
44 1  (2 + 22 2n

n=1 (1) F (5)
F n
n

AI PlY n(-1)'n (n2

n=l F (1)
n

A4 6  1  n (1) 'n(2
n=l

F (1)
n

2
A5 5 =( P1 Cn2 (-))+ 5

n=l
F

A56 1 i cn(1)¢n(-l)
n=1l

F (1)

n=l F (1)
n

For given values of k 1 and k2, the natural frequencies of the

supported structure are solutions of

det (A() ) = 0

3. Remark

The foregoing analysis can be easily extended to the case in

which the structure is resting on two beam-like elastic foundations

perpendicular to beam (1).
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In such a case, k., Z i=1,2 are substituted in the analysis

by the free-free frequency parameters and combinations of normal modes

and the additional generalized masses terms appear in the kinetic energy.



- 202 -

APPENDIX VI

EFFECT OF THE MASSES AND INERTIAS OF THE ENGINES ON THE NATURAL

FREQUENCIES OF THE LOCKHEED L-100 MODEL CONSIDERED IN CHAPTER III.

1. Introduction

In the analysis of the L-100 model considered in Chapter III the

effects of the engines were ignored. This omission was intended only

for the purpose of computational simplicity and the present analysis

indicates the modifications to be made in the previous theoretical

study in order to take into account the masses and inertias of the

engines.

The Lockheed L-100 Hercules is equipped with four 4,050 eshp Allison

T 56-A-7A turboprop engines whose characteristics are given in Ref.(32).

A schematic representation of the structure is illustrated below:

Because the geometrical symmetry of the structure is preserved,

motions of the rolling and pitching type can be studied independently.

2. Effect of the engines on the rolling natural frequencies

Additional notations to those of Chapter III are now introduced:
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n1 '2 : location of the engines along the span of the wing

mE : mass of each engine

Zl(t),Z 2 (t) : plunging displacement of the engines

Ix : moment of inertia of each engine about its axis of symmetry

al(t),a 2 (t) : angular rotation of the engines about the axis previously

defined.

The presence of the engines accounts for an additional term in the

expression of the kinetic energy given by equation (41);

*2 2 '2 '2
T engines= m (Z1 (t) + Z (t)) + I( al (t) + a (t) ) (306)
engines El1 1 x 1  2

while the expression for potential energy given by equation (43) remains

unmodified.

Additional constraint conditions expressing the continuity of dis-

placement and slope at the connection points along the wing span are:

S qn ((t)n(nl) ) - Zl(t) = 0 (307)
n=2,4

(1)( q (t) n (n2) - Z2(t) = 0 (308)
n=2,4

qn (1)(t) 'n (Il))-al(t ) = 0 (309)

n=2,4

(1)

( ( 1 ) (t) ,n(n2 ) ) - a2 (t) = 0 (310)
n=2,4
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and ( A )i are the corresponding Lagrange Multipliers, or

generalized forces developed at the points of constraint. The modified

Lagrange's equations are:

2 2
SI L P (t) + GJ (n-1) P (t)- X 3n(a ) - A e n(c) = 0 (311)

L 4

M M (1)(t) + (EI) 1 k 4  (1) +3 n (0) - A
1 n n Rn I n  1

1 1

) 3 p n(nl) - A4  n (nl) = 0 (312)
11 11

1 12 2

. 2 Z1 (t) + 1 = 0 (314)
mE 1

2m E Z2 (t) + A2 = 0 (315)

2 Ix 1 (t) + A3 
= 0 (316)

S2 I x a2 (t) + A4 = 0 (317)

We assume harmonic motion as defined in Chapter III and introduce

the following new non-dimensional parameters:

* 2
M * MI 2 1

2 =  1  ; v2  = 1
21

2mE 2x
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Pn and qn(2) remain as defined in Chapter III, but:

n n
-(1) = ?34n(0) - Al n(A(n1 ) A20n(l2 ) 2 3 n(l1)- 4 dn(fl 2) (318)

and

S* (A.)
( Zi i=1,2 =  2 i i=1,2 (319)

2

(ai)i=, 2  (A.)j=., 4  (320)

2

Substitution of (318), (319), (320), Pn and (2) into the constraint
n n

equation leads to the eigenvalue matrix and hence to the frequency

equation for the new configuration.

The natural frequencies obtained in Chapter III are found as

particular solutions of this frequency equation, in the case where

n1 = n2 = O0, by factorising out the non-identically zero determinant.

3. Effect of the engines on the pitching natural frequencies

The problem is slightly more complex in this case because additional

degrees of freedom have to be allowed for the engines, namely rotations

about the y-axis.

Let
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y : mass moment of inertia of each engine about the y-axis

81(t),82(t): angular rotations of the engines about the y-axis.

The presence of the enginescorresponds to an additional term in

the kinetic energy:

2 2 2 + 2
T = mE (Z 1 (t) + Z2 (t)) + Ix(l(t) +a 2 (t)) +

I (12 (t) + B2 (t)) (321)

but the potential energy of the overall structure remains unchanged.

The new additional constraint conditions are:

(1)( q ((t)(nl)) Zl(t) = 0 (322)
n=1,3

( q ( t) n (n2))- Z2 (t) = 0 (323)

n=1,3

(1) l (324)n=l n n
(E Pn (t6( ) ) - B2(t) = 0 (324)
n=l

( (1)
( Pn (t)6n(n2)) 2(t) = 0 (325)

n=1

n=l 11

(1)
( n (t) 'n( 2) ) - a2(t) = 0 (327)
n=l1

11

From this point on same procedure as previously applies, and

therefore the details will be omitted.
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4. Conclusion

The expected changes in the natural frequencies due to the presence

of the engines can be discussed on a qualitative basis even before

performing the numerical computations.

Because mass and inertia has been added to the structure, the

new natural frequencies are expected to be lower than those computed

in Chapter III (ef. Ref. (45), p.83)

In particular, the first natural mode of the structure was shown

to be essentially a wing mode; consequently, its corresponding natural

frequency is expected to change by a larger amount than the natural fre-

quencies corresponding to modes in which the elastic behavior of the

fuselage or tail is predominant.



- 208 -

APPENDIX VII

EVALUATION OF INTERNAL FORCES (SHEAR AND BENDING MOMENTS)

ILLUSTRATED FOR A CANTILIVERED BEAM.

1. Introduction

The Rayleigh-Ritz Component Modes Method using Lagrange Multipliers

is characterised by two main factors.

(1) The use, for each component, of its unconstrained modes for

determining the deformation in each overall structural mode.

(2) The identification of the Lagrange Multipliers as the shear forces

and.bending moments at the points of constraint.

The computational advantages introduced by (1) are particularly

clear at the stage in which the constraint conditions have to be written.

In the one-dimensional case of beam structures for instance, the bound-

ary conditions satisfied by the free-free modes are such that the con-

tinuity of the second and third derivatives of the bending displace-

ment is automatically satisfied. This results from the fact that

W"(x) and W"'(x) (with the notations used in Chapter II), have zero

value at the points of constraint, as given by the Rayleigh-Ritz

expansion. Obviously, the bending moments and shear forces which are

proportional to W" and W"' should not be zero on physical grounds,

and consequently the problem which arises is that of the convergence

of W"'(x) and W'"'(x) as given by the method. This problem is also

connected to (2) above.

For the sake of clarity, the author has chosen to illustrate

the convergence analysis on a conceptually simple case, which is that
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of a cantiliver beam. In other words, the problem is studied for one

constraint point.

2. Convergence of W" and W"' illustrated for a cantiliver beam.

Consider a beam of span L, 0 < x < L, clamped at the end x = 0,

as shown in the figure below.

o L

The treatment of this problem is based upon seeking mode shapes

as given by the expansion:

W(x) = q-n n(X) (31$
n=l

subject to the constraints:

E qn (n(0) = 0
n=l

1 qn n() =0 (3no'
n=l

By proceeding as stated in Chapters II - IV, the Lagrange multi-

pliers and generalized coordinates are determined, and consequently

the functions

W''(x) = E qn ''n(X)
n=l
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and

W"'(x) = qn t" (x)
n=l

are also determined.

The variations of W''(x) along the beam span in the fundamental

mode is represented in Figure 51; the different curves correspond

to the number of modes considered in the analysis which is indicated

along the curve. The exact variation of W'"(x) can also be seen,

as given by Reference (21).

Two fundamental remarks can be made:

(a) As the number of modes considered in the analysis increases, W" (x)

to the known exact result except in the neighborhood of x = 0.

(b) However, the exact value of W'"(0) given by Reference (21)

W''(0) = 0.8), is only 8.75% higher than the value of the corresponding

Lagrange Multiplier, obtained in a 40-modes analysis.

This fact is not surprising, as the value of X2/ 1 (the Lagrange

multipliers associated with equations 4aV) and t3ao) is precisely

that of the bending moment at x=O (up to multiplication), i.e.

X2/1 = W" (0).

Hence, as shown in Figure 51, the method offers a good representation

of W'"(x) as the number of modes increases; moreover, because the

ratio X2/Xlis computed in the process, it is possible to have an

insight on the convergence of W'' without even having to actually

evaluate W"(x) along the span. For fairly complex structures, this

fact represents a significant saving in computation time and effort.
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Figure 52 shows however, poor results for the convergence of

W"' (as expected, the rate of convergence becomes slower as the order

of the derivative of W increases), but the value of the Lagrange mul-

tiplier predicts much better the value of W'''(0) than the direct

result as it can be seen in the figure. This emphasizes again the

convenience of using the Lagrange multiuliers in the method.

3. Generalization and conclusions

The convergence results obtained in the one-constraint point-

analysis can be readily generalized for the cases in which the iso-

perimetric (constraint) conditions have to be applied at more than

one point. A behavior of the type observed in Figure 51 is expected

to occur in the neighborhood of each of the constraint points, with

the values of W"'' and W''' at the constraint points given by the

values of the Lagrange multipliers associated with the particular

constraint equation.

The following picture may help illustrate this statement.

This picture is drawn for the model of the rotor blade considered

in Chapter II, in the fundamental mode.

X "

0 ,
' :",

SiI ' .

- - _ _
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The type of behavior shown above can be explained from a mathematical

point of view by the uniform convergence of the serie giving W(x) al-

most everywhere, i.e. except at the discrete number of constraint

points. As a consequence, for example,

WI (x) if x is not a constraint
N + point

N - ft(x)

n=1
Lagrange otherwise

N +-t, multiplier
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APPENDIX VIII

EFFECTS OF FINITE CROSS-SECTIONAL DIMENSIONS ON BEAM INERTIAS AND CON-

STRAINT CONDITIONS

For structures of the type shown below:

C

/x

where, in contrast to the assumptions of Chapters III and IV,

the points A and B, C and D do not coincide, it may be necessary to

include additional (rigid) body degrees of freedom in the analysis

as shown in the Figure. The corresponding additional term in the

kinetic energy is:
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L 1
T = 1 [ 2 + 2) dm+f (2 2  ) dm +
add 2 -L -i 1 1 1

1

k2 (.2 + v 2 ) dm

-f 2 2 2
2

and the following constraint conditions must also be included:

u (B) = u(A) - d O(A)
1 1

u (D) = u(C)- d O(C)
2 2

v (A) = v (B) + d 0 (B)
1 1 1

v (C) = v (D) + d 0 (D)
1 2 2

It could be argued that a similar treatment would be necessary also for the

experimental model considered in Chapter III or for the L-100 model of

the same Chapter. Although this is strictly true for the kinetic

energy, such an analysis would be inconsistent with point constraint

conditions.

Indeed, if we consider the experimental model recalled by the

sketch which follows:
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/,

F4

we see that h << 2c h << 2c h << 2c
1 1 2 2

For this structure, if it is desired to include the thickness effect,

then care has to be taken to express the contraint conditions consistently.

Namely, the constraint conditions between beams (1) and (2) should hold

on the entire area F F F F and similarly the constraints between beams

1 2 3 4

(1) and (3) should hold at all points of the rectangle G G G G . Of
1 2 3 4

course, this induces a severe penalty on the numerical computations; the

latter problem can be avoided by reducing the analysis to point contraint

conditions as indicated in Chapter III.

Similarly, for the L-100 model recalled below:
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where c + h and c are of the same order of magnitude, the analysis
1 1

including the cross-sectional dimensions should be applied consistent

with constraint conditions formulated along the entire line H H
1 2

Among the other numerous ways in which the aforementioned structures

can be modeled, very interesting alternative possibilities are:

- plate representation for all components of the experimental model

- shell representation for the fuselage of the L-100 and plate re-

presentation for the lifting surfaces.
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FIGURE 20. - EXPERIMENTAL MODEL WITH SUPPORTS.



242<

i IA

FIGURE 21. -EXPERIMENTAL APPARATUS
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FIGURE 22. - TYPES OF OSCILLATIONS a AND 8
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FIGURE 25. - THEORETICAL RESULTS FOR THE EXPERIMENTAL MODEL

w = 125.6 cps PHYSICAL DISPLACEMENTS OF THE COMPONENTS
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FIGURE 26. - THEORETICAL RESULTS FOR THE EXPERIMENTAL MODEL

w 295.5 cps PHYSICAL DISPLACEMENTS OF THE COMPONENTS
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FIGURE 27. - THEFRETICAL RESULTS POR THE EXPERIMENTAL nDEL

w = 404.8 cps PHYSICAL DISPLACEMENTS OF THE COMPONENTS
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FIGURE 28. - THEORETICAL RESULTS FOR THE EXPERIMENTAL MODEL

w = 536.2 cps PHYSICAL DISPLACEMENTS OF THE COMPONENTS
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FIGURE 30. - THEORETICAL RESULTS FOR THE EXPERIMENTAL MODEL

w = 643.3 cps PHYSICAL DISPLACEMENTS OF THE IFPONENTS
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FIGURE 32. - LOCKHEED L-100 (IYVIL HERCULES)
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FIGURE 33. - LOCKHEED L-100 HERCULES

PHYSICAL DEFORMATIONS OF THE COMPONENTS IN THE FIRST MODE
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FIGURE 34. - LOCKHEED L-100 HERCULES

PHYSICAL DEFORMATIONS OF THE COMPONENTS IN THE SECOND MODE
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FIGURE 35. - LOCKHEED L-100 HERCULES

PHYSICAL DEFORMATIONS OF THE COMPONENTS IN THE THIRD M OD
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FIGURE 36. - LOCKHEED L-100 HERCULES

PHYSICAL DEFORMATIONS OF THE COMPONENTS IN THE FOURTH MODE
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FIGURE 37. - CONCEPT OF A PIVOTING-WING SST FOR COMMERICAL OPERATIONS



5) shows the model in flight with the wing at 45 deg. F-6 CONTINUOUS WING STRUCTURE; NO
Burnett L. Gadeberg of Ames controlled the BENDING LOAD ON PIVOTS
model.

Variations of wing angle up to and beyond 45
deg produced no apparent changes in stability and
only a slight change in lateral trim-requiring a 1-
or 2-deg offset of the ailerons. Elevator and aileron
effectiveness remained normal and we observed no
change in longitudinal trim.

Ordinary maneuvers such as loops and rolls were
performed without difficulty at wing angles of 45
deg. Coupling between longitudinal and lateral
motions did not appear in aileron rolls, but was
quite apparent in the response to elevator control.
Thus loops performed with the wing at 45 deg
appeared to take the form of a 45-deg helix, F-7 CENTROID OF LIFTING AREA NOT DISPLACED
indicating that the rotation produced by the BY ROTATION
elevator tends to align with the long axis of the
wing. With the left tip forward, use of the elevator
in a left turn tended to steepen the bank angle.
Analysis sh9ws that in this case a certain amount of
aileron deflection must be employed with the
elevator to prevent banking toward the forward tip.

Varying the sweep by turning the wing as a whole ------- - ---.---
has several practical advantages over the usual
"swing wing" design. It keeps the wing structure
continuous across the pivot and makes the primary
load on the pivot tension. With separate wing
panels pivoted at the root, however, much greater
loads develop on the pivots (F-6). Also, sweeping
the wing panels back for high-speed flight F-8 STRAIGHT-BEAM STRUCTURE.
displaces the center of lift rearward, compounding
the normal rearward center-of-pressure shift at



O VALUES OBTAINED BY THE PERTIURBATION ANALYSIS

16

14

-Ro

12 "3 (ANTISY ..)

6 m

12

20 40 60 80
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PHYSICAL DISPLACEMENTS IN THE FUNDAMENTAL MODE
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FIGURE 42. - CANTILIVERED PLATE IN TRANSVERSE VIBRATIONS
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FIGURE 45. - POINT CLAMPED SOUARE PLATE.

CONVERGENCE OF THE SECOND NATURAL FREQUENCY TOWARDS THAT OF A CANTILIVERED PLATE
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ABSTRACT

The free vibrations of elastic structures of arbitrary complexity are

analyzed in terms of their component modes. The method is based upon the

use of the normal unconstrained modes of the components in a Rayleigh-Ritz

analysis. The continuity conditions are enforced by means of Lagrange

Multipliers. Examples of the structures considered are: beams with non-

uniform properties, airplane structures with high or low aspect ratio

lifting surface components, the oblique wing airplane as proposed by

R.T. Jones, and plate structures.

The method is also applied to the analysis of modal damping of

linear elastic structures. Convergence of the method versus the number

of modes per component and/or the number of components is discussed; the

method is compared to more conventional approaches, to ad-hoc methods for

some examples, and to experimental results.




